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ABSTRACT

Existing time-resolved non-line-of-sight (NLOS) imaging methods

reconstruct hidden scenes by inverting the optical paths of indirect

illumination measured at visible relay surfaces. These methods are

prone to reconstruction artifacts due to inversion ambiguities and

capture noise, which are typically mitigated through the manual

selection of filtering functions and parameters. We introduce a

fully-differentiable end-to-end NLOS inverse rendering pipeline

that self-calibrates the imaging parameters during the reconstruc-

tion of hidden scenes, using as input only the measured illumina-

tion while working both in the time and frequency domains. Our

pipeline extracts a geometric representation of the hidden scene

from NLOS volumetric intensities and estimates the time-resolved

illumination at the relay wall produced by such geometric informa-

tion using differentiable transient rendering. We then use gradient

descent to optimize imaging parameters by minimizing the error

between our simulated time-resolved illumination and the mea-

sured illumination. Our end-to-end differentiable pipeline couples

diffraction-based volumetric NLOS reconstruction with path-space

light transport and a simple ray marching technique to extract de-

tailed, dense sets of surface points and normals of hidden scenes.

We demonstrate the robustness of our method to consistently re-

construct geometry and albedo, even under significant noise levels.
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Figure 1: We present a self-calibrating, fully-differentiable

NLOS inverse rendering pipeline for the reconstruction of

hidden scenes. Our method only requires transient measure-

ments as input and relies on differentiable rendering and

implicit surface estimation from NLOS volumetric outputs

to obtain the optimal NLOS imaging parameters that yield

accurate surface points, normals, and albedo reconstructions

of the hidden scene. The top row shows the reconstructed

volumetric intensity, albedo, and 3D geometry of a real scene

[Liu et al. 2020], failing to reconstruct geometry estimation

due to noise interference. The bottom row demonstrates our

results after optimization of the imaging parameters.

1 INTRODUCTION

Time-gated non-line-of-sight (NLOS) imaging algorithms aim to

reconstruct hidden scenes by analyzing time-resolved indirect illu-

mination on a visible relay surface [Faccio et al. 2020; Jarabo et al.

2017; Satat et al. 2016]. These methods typically emit ultra-short

illumination pulses on the relay surface, and estimate the hidden

scene based on the time of flight of third-bounce illumination reach-

ing the sensor [Lindell et al. 2019; Liu et al. 2019; O’Toole et al. 2018;

Velten et al. 2012; Xin et al. 2019].

The majority of existing methods estimate hidden geometry by

backprojecting captured third-bounce illumination into a voxelized

space that represents the hidden scene [Laurenzis and Velten 2014],

lacking information about surface orientation and self-occlusions

[Iseringhausen and Hullin 2020]. Moreover, captured data contains

higher-order indirect illumination and high-frequency noise from
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different sources that introduce undesired artifacts in the recon-

structions. Performing a filtering step over the data or the recon-

structed volume is the most common solution to mitigate errors and

enhance the geometric features [Arellano et al. 2017; Buttafava et al.

2015; Liu et al. 2019; O’Toole et al. 2018; Velten et al. 2012]; how-

ever, this requires manual design and selection of filter parameters,

as their impact in the reconstruction quality is highly dependent

on the scene complexity, environment conditions, and hardware

limitations.

Recent physically-based methods proposed an alternative tech-

nique that avoids the issues linked to backprojection. By merging a

simplified but efficient three-bounce transient rendering formula

with an optimization loop, the computed time-resolved illumination

at the relay wall resulting from an optimized geometry reconstruc-

tion is compared to the measured illumination. However, geometric

representations introduced by existing works limit the detail in the

reconstructions [Iseringhausen andHullin 2020] or fail to reproduce

the boundaries of hidden objects [Tsai et al. 2019].

Alternatively, the recent development of accurate transient ren-

dering methods [Jarabo et al. 2014; Pediredla et al. 2019; Royo et al.

2022] has fostered differentiable rendering pipelines in path space

[Wu et al. 2021; Yi et al. 2021], which have the potential to become

key tools in optimization schemes. However, differentiable methods

are currently bounded by memory limitations since the need to

compute the derivatives of time-resolved radiometric data severely

limits the number of unknown parameters that can be handled. The

difficulty of handling visibility changes in a differentiable manner,

as well as the large number of parameters that need to be taken

into account, are two limiting factors shared as well with steady-

state differentiable rendering [Li et al. 2018; Zhao et al. 2020], that

are further aggravated in the transient regime. As a result, NLOS

imaging methods that rely on differentiable rendering are therefore

limited to simple operations such as tracking the motion of a single

hidden object with a known shape [Yi et al. 2021].

To address these problems, we propose a novel self-calibrated,

fully differentiable pipeline for NLOS inverse rendering that jointly

optimizes system parameters and scene information to extract sur-

face points, normals, and albedo of the hidden geometry. To this

end, we combine diffractive phasor-field imaging in the frequency

domain [Liu et al. 2020, 2019] with differentiable third-bounce tran-

sient rendering in the temporal domain. We leverage the volumetric

output of phasor-field NLOS imaging to estimate geometric informa-

tion of the hidden scene, which we then use on a transient rendering

step to simulate time-resolved illumination at the relay wall. By

minimizing the error between simulated and captured illumination,

we provide a fully-differentiable pipeline for self-calibrating NLOS

imaging parameters in an end-to-end manner.

Our optimized parameters provide accurate volumetric outputs

from which we estimate surface points, normals and albedos of

hidden objects, with more geometric detail than previous surface-

based methods. Our method is robust in the presence of noise,

providing consistent geometric estimations under varying capture

conditions. Our code is freely available for research purposes
1
.

1
https://github.com/KAIST-VCLAB/nlos-inverse-rendering.git

𝐼𝐼pf = 𝑅𝑅𝑅𝑅𝑅𝑅(𝑃𝑃(𝑯𝑯; Θpf)) 𝐺𝐺 = 𝑅𝑅(𝐼𝐼pf) 𝑯𝑯𝑅𝑅 = 𝑅𝑅(𝐺𝐺;ΘG,Θls) ℒ = ∑ 𝑯𝑯−𝑯𝑯𝑅𝑅 2
2 + Γ

Input 𝑯𝑯

NLOS imaging Estimate 𝐺𝐺 Render 𝑯𝑯𝑅𝑅 Optimization

(a) Section 4.1 (b) Section 4.2 (c) Section 4.3 (d) Section 4.4

Parameters Θpf, ΘG, Θls

Figure 2: Overview of our self-calibrated, fully differentiable

NLOS inverse rendering workflow (Sections 3 and 4). (a)

We perform NLOS imaging using a phasor-field diffraction

method, taking an initial matrix 𝑯 of transient measure-

ments as input, and outputting volumetric intensity 𝐼
pf
. (b)

We estimate𝐺 , an implicit geometric representation of the

hidden scene, from 𝐼
pf
. (c)We obtain the time-resolved illumi-

nation 𝑯𝑹 from𝐺 using differentiable path-space transient

rendering. (d) We optimize imaging parameters until the er-

ror between 𝑯 and 𝑯𝑹 converges with regularization terms Γ.
Geometry 𝐺 is computed during the forward pass, while Θ

pf
,

Θ
ls
, and ΘG are updated during the backward pass.

2 RELATEDWORK

Active-light NLOS imaging methods provide 3D reconstructions

of general NLOS scenes by leveraging temporal information of

light propagation by means of time-gated illumination and sensors

[Faccio et al. 2020; Jarabo et al. 2017].

Scene representation. While existing methods rely on inverting

third-bounce transport, they may differ in their particular repre-

sentation of scene geometry as volumetric density or surfaces. Vol-

umetric approaches estimate geometric density by backprojecting

third-bounce light paths onto a voxelized space [Ahn et al. 2019;

Arellano et al. 2017; Buttafava et al. 2015; Gariepy et al. 2015; Gupta

et al. 2012; LaManna et al. 2018; Velten et al. 2012]. Efficiently invert-

ing the resulting discrete light transport matrix is not trivial; many

dimensionality reduction methods have been proposed [Heide et al.

2019; Lindell et al. 2019; O’Toole et al. 2018; Xin et al. 2019; Young

et al. 2020], but they are often limited in spatial resolution (as low

as 64×64 in some cases) due to memory constraints. Surface meth-

ods, in contrast, rely on inverting third-bounce light transport onto

explicit representations of the geometry [Iseringhausen and Hullin

2020; Plack et al. 2023; Tsai et al. 2019], usually starting with simple

blob shapes, progressively optimizing the geometry until loss con-

verges. In contrast, we estimate implicit geometric representations

of the hidden scene based on surface points and normals by ray

marching the volumetric output of NLOS imaging, inspired by re-

cent work on neural rendering [Barron et al. 2021; Mildenhall et al.

2020; Niemeyer et al. 2022]. The combination of NLOS imaging

with differentiable transient rendering over the estimated geometry

allows us to self-calibrate imaging parameters in an end-to-end

manner. For clarity, in this paper the term explicit surface refers to
a polygonal surface mesh, while implicit surface denotes a represen-
tation based on surface points and their normals, without defining

a surface mesh. Please, refer to Section 4.2 for a further detailed

discussion on explicit/implicit surface representations.

Learning-based approaches. Other methods leverage neural net-

works instead, such as U-net [Grau Chopite et al. 2020], convolu-

tional neural networks [Chen et al. 2020], or neural radiance fields

https://github.com/KAIST-VCLAB/nlos-inverse-rendering.git
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[Mu et al. 2022]. These learning-based methods are learned using

object databases such as ShapeNet [Chang et al. 2015]. However,

their parameters are trained with steady-state renderings of syn-

thetic scenes composed of a single object behind an occluder in

an otherwise empty space. As such, their performance is often de-

graded with real scenes, often overfitting to the training dataset,

and becoming susceptible to noise. Our method does not rely on a

pre-trained deep network to extract high-level features from syn-

thetic steady-state rendering data; instead, we explicitly optimize

virtual illumination functions and scene information by evaluating

actual transient observations, without relying on neural networks.

Recent works by Shen et al. [2021] and Fujimura et al. [2023] lever-

age transient observations similar to ours for optimizing multi-layer

perceptrons for imaging. However, these methods cannot be utilized

for calibrating the filtering parameters of volumetric NLOS meth-

ods due to the lack of evaluation of the physical observation of the

transient measurements by an NLOS imaging and light transport

model.

Wave-based NLOS imaging. Recent works have shifted the para-

digm of third-bounce reconstruction approaches to the domain of

wave optics [Lindell et al. 2019; Liu et al. 2019]. In particular, the

phasor field framework [Liu et al. 2019] computationally transforms

the data captured on the relay surface into illumination arriving at

a virtual imaging aperture. This has enabled more complex imaging

models (e.g., [Dove and Shapiro 2020a,b; Guillén et al. 2020; Marco

et al. 2021; Reza et al. 2019]), and boosted the efficiency of NLOS

imaging to interactive and real-time reconstruction rates [Liao et al.

2021; Liu et al. 2020; Mu et al. 2022; Nam et al. 2021]. However, these

systems require careful calibration of all their parameters, including

the definition of the phasor field and the particular characteristics of

lasers and sensors, which makes using them a cumbersome process.

Our fully self-calibrated system overcomes this limitation.

3 TIME-GATED NLOS IMAGING MODEL

We propose a differentiable end-to-end inverse rendering pipeline

(shown in Figure 2) to improve the reconstruction quality of hidden

scenes by optimizing the parameters of NLOS imaging algorithms

without prior knowledge of the hidden scene. In the following,

we describe our NLOS imaging model. Section 4 describes our

optimization pipeline based on this NLOS imaging model.

3.1 Phasor-based NLOS imaging

In a standard NLOS imaging setup (see Figure 3), a laser beam is

emitted towards a point x𝑙 on a visible relay wall, which reflects

light towards the hidden scene and then is reflected back to the

wall. The hidden scene is imaged based on the time of flight of the

time-resolved illumination, captured at points x𝑠 on the relay wall

in the form of a measurement matrix 𝑯 (x𝑙 , x𝑠 , 𝑡).
The recent diffractive phasor-based framework by Liu et al. [2020;

2019] intuitively turns the grid of measured points x𝑠 on the relay

wall into a virtual aperture; this allows to formulate the reconstruc-

tion of NLOS scenes as a virtual line-of-sight (LOS) problem.

We define 𝑯 (x𝑙 , x𝑠 ,Ω) as a set of phasors at the relay wall, ob-

tained by Fourier transform of the measurement matrix 𝑯 (x𝑙 , x𝑠 , 𝑡).
In practice, since this function 𝑯 is noisy, we apply a filtering
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Figure 3: NLOS imaging setup. A laser emits a pulse of light,

which travels to the relay wall, then to the hidden geometry,

back to the relay wall, and reaches the sensor after a travel

time of 𝑡 = 𝑡1 +𝑡2 +𝑡3 +𝑡4. The inset shows the sensor response;

the peak at 𝑡 indicates the presence of a hidden object.

operation as

𝑯
pf

(x𝑙 , x𝑠 ,Ω) = P (x𝑙 , x𝑠 ,Ω) 𝑯 (x𝑙 , x𝑠 ,Ω) , (1)

where P(x𝑙 , x𝑠 ,Ω) represents a virtual illumination function that

acts as a filter over 𝑯 , typically defined as a spatially-invariant

illumination function [Liu et al. 2020, 2019]. The hidden scene can

then be imaged as an intensity function 𝐼
pf
(x𝑣, 𝑡) on a voxelized

space via Rayleigh-Sommerfeld Diffraction (RSD) operators as

𝐼
pf

(x𝑣, 𝑡) =

����� ∞∫
−∞

𝑒𝑖
Ω
𝑐
𝑡
∫
𝑆

∫
𝐿

𝑒−𝑖
Ω
𝑐 (𝑑𝑙𝑣+𝑑𝑣𝑠 )

𝑑𝑙𝑣𝑑𝑣𝑠
𝑯pf (x𝑙 , x𝑠 ,Ω) dx𝑙dx𝑠 dΩ

2𝜋

�����2 ,
(2)

where 𝐿 and 𝑆 define the illuminated and measured regions on the

relay wall, respectively; 𝑑𝑙𝑣 = ∥x𝑙 − x𝑣 ∥ and 𝑑𝑣𝑠 = ∥x𝑣 − x𝑠 ∥ are
voxel-laser and voxel-sensor distances (see Figure 3); and Ω repre-

sents frequency.

Classic NLOS reconstruction methods reconstruct hidden geom-

etry by evaluating 𝑯 (x𝑙 , x𝑠 , 𝑡) at the time of flight of third-bounce

illumination paths between scene locations and points on the relay

surface [Arellano et al. 2017; Gupta et al. 2012; O’Toole et al. 2018].

This is analogous to evaluating 𝐼
pf
(x𝑣, 𝑡) at 𝑡 = 0, where the RSD

propagators have traversed an optical distance ∥x̄∥ = 𝑑𝑙𝑣 + 𝑑𝑣𝑠 . We

incorporate a similar third-bounce strategy in our path integral

formulation as described in the following. Due to the challenges

of estimating surface albedo due to diffraction effects during the

NLOS imaging process [Guillén et al. 2020; Marco et al. 2021], we

assume an albedo term per surface point that approximates the

averaged reflectance observed from all sensor points.

3.2 Path-space light transport in NLOS scenes

To formally describe transient light transport in an efficient manner,

we rely on the transient path integral formulation [Jarabo et al. 2014;

Royo et al. 2022]. Transient light transport𝑯 (x𝑙 , x𝑠 , 𝑡) ∈ R can then
be expressed as

𝑯 (x𝑙 , x𝑠 , 𝑡) =
∫
T

∫
𝜓

K(x̄, t)d𝜇 (x̄)d𝜇 (t), (3)
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where K is the radiometric contribution in transient path-space;

d𝜇 (x̄) is the differential measure of path x̄; T represents the domain

of temporal measurements; t = 𝑡𝑙 . . . 𝑡𝑠 is the sequence of time-

resolved measurements on each vertex; d𝜇 (t) denotes temporal

integration at each vertex; x̄ = x𝑙 . . . x𝑠 is a set of discrete transient
path time intervals of 𝑘 + 1 vertices; and𝜓 = ∪∞

𝑘=1
𝜓𝑘 is the entire

space of paths with any number of vertices, with𝜓𝑘 being the space

of all paths with 𝑘 vertices. For convenience and without losing

generality, we ignore the fixed vertices at the laser and sensor device

in our formulae.

In practice, 𝑯 is obtained by the spatio-temporal integration of

transient measurements during a time interval 𝜏 , which accounts

for the contribution of all paths x̄ with time of flight

𝑡 = tof (x̄) =
∑︁𝑘

𝑖=1

| |x𝑖 − x𝑖−1 | |
𝑐

, (4)

where 𝑐 is the speed of light, x0 ≡ x𝑙 , and x𝑘 ≡ x𝑠 . We assume no

scattering delays at the vertices.

Incorporating the third-bounce strategy of NLOS reconstruction

methods in our path integral formulation, we can express K in a

closed form as

K(x̄, t) = Λ(x𝑙 → x𝑔, 𝑡𝑙 )𝜌 (x𝑔)𝔗(x̄, t)Φ(x𝑔 → x𝑠 , tof (x̄)), (5)

where Λ is the emitted light from the laser, Φ is the time-dependent

sensor sensitivity function, 𝜌 represents surface reflectance, and

𝔗(x̄, t) is the path throughput defined by

𝔗(x̄, t) = 𝑉 (x𝑙 , x𝑔)
|cos𝜃1 | | cos𝜃2 |

𝑑2

𝑙𝑔

𝑉 (x𝑔, x𝑠 )
|cos𝜃3 | | cos𝜃4 |

𝑑2

𝑔𝑠

, (6)

where 𝑉 is the binary visibility function between two vertices,

𝑑𝑙𝑔 = ∥x𝑙 − x𝑔 ∥ and 𝑑𝑔𝑠 = ∥x𝑔 − x𝑠 ∥, and 𝜃1−4 refer to the angles

between the normals of both the relay wall and surface geometry,

and the path segments in x̄ (see Figure 3). Note that the three-bounce
illumination is expressed in the path space as x̄ ≡ x𝑙 → x𝑔 → x𝑠 .

Neither the emitted light Λ nor the sensor sensitivity Φ are ideal

Dirac delta functions. Yi et al. [2021] and Hernandez et al. [2017]

provide the following models for the laser and sensor behavior

Λ(𝑡)= 𝐼𝑙

𝜎𝑙
√

2𝜋
𝑒−𝑡

2/(2𝜎2

𝑙
) , (7)

Φ(𝑡)= 𝜅𝑠𝑒
−𝜅𝑠𝑡 ∗ 1

𝜎𝑠
√

2𝜋
𝑒−(𝑡−𝜇𝑠 )2/(2𝜎2

𝑠 ) , (8)

where 𝜎𝑙 is the standard deviation of the Gaussian laser pulse, 𝐼𝑙 is

the laser intensity, 𝜅𝑠 is the sensor sensitivity decay rate, 𝜎𝑠 is

the standard deviation of the sensor jitter, and 𝜇𝑠 is the offset of

the sensor jitter. Since we are only interested on reproducing the

combined effect of the laser and sensor models Λ and Φ on the

path throughput (Equation 6), we replace them by a single joint

laser-sensor correction function as

Ψ(𝑡)= Φ(𝑡) ∗ Λ(𝑡)

= 𝜅𝑠𝑒
−𝜅𝑠𝑡 ∗ 𝐼𝑙

𝜎𝑙𝑠
√

2𝜋
𝑒−𝑡

2/(2𝜎2

𝑙𝑠
) .

(9)

Note that the convolution of the two Gaussian functions of Equa-

tions 7 and 8 yields a single Gaussian with a joint model parameter

𝜎𝑙𝑠 =

√︃
𝜎2

𝑙
+ 𝜎2

𝑠 . We set the sensor jitter offset as 𝜇𝑠 = 0, with the

assumption that a uniform distribution of shifts is equally present

in all transient measurements. Please refer to the supplemental

material for more details on derivation. Our inverse rendering op-

timization seeks optimal parameters of this model automatically

based on physically-based transient rendering.

4 DIFFERENTIABLE TIME-GATED NLOS

INVERSE RENDERING

In the following, we describe in detail our self-calibrated, end-to-

end differentiable inverse rendering pipeline, where the forward

pass provides high-detailed reconstructions of the geometry 𝐺 ,

while the backward pass optimizes per-voxel surface reflectance as

albedoΘ𝐺 , as well as system parametersΘ
pf

andΘ
ls
to improve the

forward pass reconstruction. For clarity, from here on, we redefine

our functions in terms of their parameters to be optimized. Refer to

the supplemental material for a summary of the different symbols.

4.1 Virtual illumination for RSD propagation

The inputs to our system are the known locations of the illumina-

tion x𝑙 and the sensor x𝑠 , a matrix𝑯 of transientmeasurements, and

an arbitrary virtual illumination function P(Θ
pf
) ≡ P(x𝑙 , x𝑠 ,Ω)

(Equation 1), where Θ
pf

represents the optimized parameter space

for P. Based on previous works [Liu et al. 2020, 2019; Marco et al.

2021], we define Θ
pf

= {𝜎
pf
,Ω

pf
} to model a central frequency

with a zero-mean Gaussian envelope as P(Θ
pf
) = 𝑒𝑖Ωpf

𝑡𝑒
−𝑡2/(2𝜎2

pf
)
,

where 𝜎
pf
,Ω

pf
represent the standard deviation and central fre-

quency, respectively. Note that this equation is fully differentiable.

In the forward pass we first compute the filtered matrix 𝑯
pf

(Equa-

tion 1) using the optimized virtual illumination P(Θ
pf
), having

𝑯
pf

= 𝑃 (𝑯 ;Θ
pf
) (Figure 2a). We then compute a first estimation of

the volumetric intensity 𝐼
pf

of the hidden scene by evaluating RSD

propagation (Equation 2) at 𝑡 = 0, as 𝐼
pf

= 𝑅𝑆𝐷 (𝑯
pf
). Next, we

show how to estimate both the geometry 𝐺 and the time-resolved

transport 𝑯𝑅 at the relay wall.

4.2 Implicit surface geometry

Our next goal is to estimate an implicit surface representation 𝐺

(points x𝑔 and normals n𝑔) by means of a differentiable function

𝐷 as 𝐺 = 𝐷 (𝐼
pf
) (Figure 2b) that takes our volumetric intensity

function 𝐼
pf

as input.

We keep an implicit representation of our hidden surface geom-

etry 𝐺 without creating meshed (explicit) surface geometry during

the whole optimization. The key idea is to use the volumetric data

computed at each forward pass to estimate projections of the ge-
ometry (i.e., points and normals) visible from the perspective of

each sensor point x𝑠 on the relay wall and use those to perform

path-space differentiable transient rendering at x𝑠 .
We first estimate the geometry observed by x𝑠 by sampling rays

towards our volumetric intensity 𝐼
pf
, and build an implicit repre-

sentation of the closest surface along each ray. Using information

from neighboring rays, we then estimate the normals required to

compute the path-space throughput of 𝔗 (Equation 6). Using the

implicit geometry computed for every sensing point x𝑠 , we then
compute time-resolved illumination at x𝑠 as we describe later in
this subsection.

Points. As Figure 4a shows, for each sensor point x𝑠 we sample

rays uniformly using concentric hemispherical mapping [Shirley
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Figure 4: Geometry estimation procedure. (a) We ray-march from sensor points x𝑠 , and estimate the intensity at each point

along the ray by trilinear interpolation of 𝐼
pf
. (b) From the discrete ray-marching samplings, we obtain a continuous depth

function. (c) Normals are computed based on the distances at neighboring ray samples in the concentric hemispherical mapping.

and Chiu 1997]. We then sample points along each ray with ray

marching, and estimate the intensity at each sampled point (blue

in Figure 4a) by trilinear interpolation of neighbor voxel intensities

of 𝐼
pf

(red). From the interpolated volumetric intensities 𝐼
pf
(𝑑𝑖 )

(Figure 4b, left), we estimate the distance 𝑑𝑔𝑠 between x𝑠 and the

hidden surface vertex x𝑔 (Figure 4b, right), assuming x𝑔 is located

at the maximum intensity along the ray. To find 𝑑𝑔𝑠 in free space

from the ray-marched intensities in a differentiable manner, we

use softargmax function: 𝑑𝑔𝑠 =
∑

𝑖 𝜔𝑖𝑑𝑖∑
𝑖 𝜔𝑖

, where 𝑑𝑖 is a ray-marched

distance from x𝑠 , and 𝜔𝑖 = 𝑒𝛽𝐼pf,𝑖
is a probability density function

of 𝑑𝑖 , and 𝐼pf,𝑖 is the volume intensity at distance 𝑑𝑖 along the ray.

𝛽 is a hyperparameter that determines the sensitivity in blending

neighboring probabilities, set to 1e+3 in all our experiments. If

𝐼
pf

falls below a threshold, we assume that no surface has been

found; we set this threshold to 0.05 for synthetic scenes, and 0.2

for real scenes throughout the paper. Our procedure implicitly

estimates surface points x𝑔 at distances 𝑑 =
x𝑠 − x𝑔


by observing

via ray marching the grid of phasor-field intensities 𝐼
pf

from the

perspective of the sensing points x𝑠 .

Normals. As shown in Figure 4c, we estimate the normal n𝑔 at
vertex x𝑔 based on the distances 𝑑𝑁 , 𝑑𝑆 , 𝑑𝐸 , 𝑑𝑊 at neighboring ray

samples in the concentric hemispherical mapping. We compute the

normals of two triangles △𝑑𝑁𝑑𝐸𝑑𝑆 and △𝑑𝑆𝑑𝑊 𝑑𝑁 via two edges’

cross product and compute n𝑔 as the normalized sum of the normals

of those two triangles.

Surface albedo. Besides points and normals—updated implicitly

during each forward pass—, computing path contribution K (Equa-

tion 5) at sensor points x𝑠 requires computing per-point monochro-

matic albedo 𝜌 . We estimate albedos by evaluating the physical

observation of the transient measurements in the backward pass.

4.3 Differentiable transient rendering

The next step during the forward pass is to obtain time-resolved

illumination 𝑯𝑅 at x𝑠 through transient rendering. In our pipeline

(Figure 2c), we represent this step as 𝑯𝑅 = 𝑅(𝐺 ;ΘG,Θls
), where

𝑅() computes third-bounce time-resolved light transport at sensing

points x𝑠 . We use the rays sampled from x𝑠 (Figure 4b) to compute

the radiometric contribution K(x̄, t) of the implicit surface points

x𝑔 estimated by those rays, following Equations 5 through 9.

Visibility. Differentiating the binary visibility function 𝑉 , neces-

sary to compute the path throughput 𝔗 (Equation 6), is challenging.

However, note that we estimate an implicit surface at x𝑔 based on

volumetric intensities, which strongly depend on the illumination

from the laser reaching the surface and going back to the sensor

without finding any occluder. Based on this, we avoid computing

the visibility term by assuming the volumetric intensities are a good

estimator of the geometry visible from the perspective of both laser

and sensor positions on the relay wall.

Transient rendering. The radiometric contributionK(x̄, t) (Equa-
tion 5) yields time-resolved transport in path space for a single

path x̄ ≡ x𝑙 → x𝑔 → x𝑠 . Our goal is to obtain a set of dis-

crete transient measurements 𝑯𝑅 from all paths arriving at each

sensing point x𝑠 , such that 𝑯𝑅 is comparable to the captured

matrix 𝑯 . To this end, we first discretize |K(x̄, t) | into neighbor-

ing bins 𝜏 using a differentiable Gaussian distribution function as

ˆK(x̄, 𝜏) = |K(x̄, t) | exp

(
− (𝜏−𝑡 )2

2𝜎2

𝑡

)
, where 𝜏 is a transient bin index,

𝑡 is continuous time of x̄ (Equation 4), and 𝜎𝑡 is set to 0.62 to make

the FWHM of the Gaussian distribution cover a unit time bin.

The time-resolved measurement 𝑯𝑟 (x𝑙 , x𝑠 , 𝜏) at temporal index

𝜏 is then approximated as the sum of the discrete path contributions

ˆK(x̄, 𝜏) sampled through the concentric disk mapping as

𝑯𝑟 (x𝑙 , x𝑠 , 𝜏) ≈
∑︁
x̄∈X

ˆK(x̄, 𝜏), (10)

where X is the set of paths x̄ that start at x𝑙 and end in x𝑠 . After
generating the rendered transient data 𝑯𝑟 , we then apply our joint

laser-sensor model to it to obtain a sensed transient data 𝑯𝑅 :

𝑯𝑅 (x𝑙 , x𝑠 , 𝜏) = Ψ(𝜏) ∗ 𝑯𝑟 (x𝑙 , x𝑠 , 𝜏) + 𝜂𝑠 (11)

where 𝜂𝑠 is the intensity offset parameter that takes the ambient

light and the dark count rate of the sensor into account.

4.4 Optimization of system parameters

Our final goal is to estimate the system parametersΘ = {Θ
pf
,Θ

ls
,Θ𝐺 }

that minimize the loss between the measured matrix 𝑯 and the

rendered matrix 𝑯𝑅 (Figure 2, red). We define this as

min

Θ
L(𝑯 ,𝑯𝑅), (12)

which we minimize by gradient descent. The transient cost func-

tion L consists of a data term and regularization terms as

L(𝑯 ,𝑯𝑅) = 𝐸𝐻 + 𝐸𝐼
pf
+ 𝐸𝜌 . (13)
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Figure 5: Convergence of the imaging parameters optimized by our method in the Bike real scene. From left to right: Phasor

kernel parameters (Ω
pf
, 𝜎

pf
), laser-sensor joint model parameters (𝜎

ls
, 𝐼
l
, 𝜅s, 𝜂s), the converged phasor kernel (purple and green

for real and imaginary parts), measured transients compared to our reconstructed one, and our reconstruction results after the

optimization. The yellow line indicates when the optimization converges. The converged phasor kernel yields a high-quality

reconstruction, while the laser and sensor parameters provide an accurate estimation of transient illumination.

The data term 𝐸𝐻 computes an 𝑙2 norm between the transient

measurements 𝑯 and 𝑯𝑅 :

𝐸𝐻 =
1

𝑁𝐻

∑︁
𝑖

𝑯𝑖 − 𝑯𝑅,𝑖

2

2
, (14)

where 𝑁𝐻 is the total number of elements of 𝑯 . The key insight

of this loss term is that 𝑯𝑅 is the byproduct of time-resolved il-

lumination computed from our implicit geometry 𝐺 , which was

itself generated from volumetric intensities 𝐼
pf

by means of RSD

propagation of the ground truth 𝑯 . The difference between 𝑯 and

𝑯𝑅 is therefore a critical measure of the accuracy of geometry 𝐺

and 𝐼
pf
. By backpropagating the loss term through our pipeline, we

optimize all system parameters, which improve the estimation of

𝐼
pf
, 𝐺 and therefore 𝑯𝑅 .

The term 𝐸𝐼
pf
in Equation 13 is a volumetric intensity regular-

ization term that imposes sparsity, pursuing a clean image:

𝐸𝐼
pf
= 𝜆1

1

𝑁
pf,z

∑︁
𝑗

��𝐼
pf,z, 𝑗

��, (15)

where 𝐼
pf,z is the maximum intensity values of 𝐼

pf
projected to the

𝑥𝑧 plane, 𝑁
pf,z is the number of pixels of 𝐼

pf,z, and 𝜆1 is a loss-scale

balance hyperparameter, which is set to 1e+2 in all our experiments.

The term 𝐸𝜌 in Equation 13 is a regularization term that imposes

smoothness, suppressing surface reflectance noise:

𝐸𝜌 = 𝜆2

1

𝑁𝑣

∑︁
𝑚

��∇𝑥𝑦𝜌 (x𝑣,𝑚)
��, (16)

where 𝑁𝑣 is the number of voxels x𝑣 , and 𝜆2 is a loss-scale balance

hyperparameter, which is set to 5e-3 in all our experiments. All

terms 𝐸𝐻 , 𝐸𝐼
pf
, and 𝐸𝜌 of the loss function are computed over

batches of the transients and voxels at every iteration.

5 RESULTS

We implement our pipeline using PyTorch. Our code runs on an

AMD 7763 CPU of 2.45GHz equipped with a single NVIDIA GPU

A100. 3D geometry is obtained from points and normals using

Poisson surface reconstruction [Kazhdan and Hoppe 2013]. Please

note that we do not perform any thresholding or masking of the

data prior to this step. We evaluate our method on four real confocal

datasets Bike, Resolution, SU, and 34, provided by O’Toole et al.

Table 1: Ablation study of the impact of each component.

MSE transient loss comparison with different configurations

with the Bunny scene with two different albedos (Figure 8).

Component

MSE

Phasor kernel Albedo Laser-sensor model transient

✔ — — 6.817e-3

✔ — ✔ 6.627e-3

— ✔ — 2.239e-3

— ✔ ✔ 2.217e-3

✔ ✔ — 2.124e-3

✔ ✔ ✔ 1.971e-3

[2018], Ahn et al. [2019] and Lindell et al. [2019]; on two real non-

confocal datasets 44i and NLOS, provided by Liu et al. [2019]; and

on four synthetic confocal datasets Erato, Bunny, Indonesian and

Dragon, generatedwith the transient renderer by Chen et al. [2020].

The real datasets include all illumination bounces and different

levels of noise depending on their exposure time. The synthetic

datasets include up-to third-bounce illumination. In specific cases,

we manually add Poisson noise to synthetic datasets to evaluate

our robustness to signal degradation.

5.1 Convergence of system parameters

In Figure 5, we show the convergence of our system parameters in

a full optimization of the Bike real scene, showing as well the final

reconstruction of both volumetric intensity and geometry. Phasor-

field kernel parameters Ω
pf
and 𝜎

pf
(first column) are responsible

for improving the reconstruction quality by constructing a phasor

kernel (fourth column, top) that yields high-detailed geometry. The

laser and sensor parameters (second and third columns) improve the

reconstruction of the transient measurements so that the transient

simulation (fourth column, bottom, orange) resembles as much as

possible the input data (blue). Refer to the supplemental material

for more results of the progressive optimization.

We evaluate the impact of each component in our optimization

pipeline: phasor kernel, albedo, and laser-sensor model, using a

256 × 256 × 201 voxel volume. As Table 1 shows, adding albedo

and laser-sensor parameters improves the result over just using the
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Figure 6: Evaluation of our surface reconstruction under

increasing levels of Poisson noise (left to right). From top

to bottom: intensity volume, reconstructed geometry, and

measured vs. optimized transport. Our method reconstructs

geometry reliably across a broad spectrum of noise levels.

A lower signal-to-noise ratio (SNR) value indicates a higher

level of noise, with an exponential increase in noise.

phasor parameters, while including the three components yields the

best results. The impact of optimizing albedo is the most significant

in this experiment.

5.2 Robustness to noise

To illustrate the robustness of our method to signal degradation, in

Figure 6 we show reconstructions of the Bunny synthetic dataset

under increasing levels of Poisson noise (from left to right) applied

to the input transient data. The first row shows the final volumetric

reconstruction after the optimization, while the second row shows

the resulting surface estimation. The third row shows a comparison

between the input transient illumination (blue) and our converged

transient illumination at the same location that results from our

estimated geometry (orange). The parameters optimized by our

pipeline produce a volumetric reconstruction robust enough for our

surface estimation method to obtain a reliable 3D geometry under

a broad spectrum of noise levels. Note that while the volumetric

outputs may show noticeable noise levels (first row), our pipeline

optimizes the imaging parameters so that such volumetric outputs

provide a good baseline for our geometry estimation method, which

yields surface reconstructions that consistently preserve geometric

details across varying noise levels (second row).

In Figure 7, we compare our method with existing volumetric

approaches on two real confocal scenes, Resolution and Bike,

captured under different exposure times. For each scene, first to

fourth columns illustrate the compared methods: O’Toole et al.

[2018], Lindell et al. [2019], Liu et al. [2020], and ours, respectively.

First to fourth rows show the resulting volumetric intensity images

under increasing exposure times of 10, 30, 60, and 180 minutes,

respectively. Our method converges to imaging parameters that

produce the sharpest results while significantly removing noise

even under the lowest exposure time (top row). Other methods

degrade notably at lower exposure times, failing to reproduce details

in the resolution chart, or yielding noisy outputs in the Bike scene.

While LCT [O’Toole et al. 2018] allows to manually select an

SNR filtering parameter 𝛼 to improve results in low-SNR condi-

tions, our experiments with different 𝛼 values from 0.001 to 1.0

at different exposure levels validate that our automated calibra-

tion approach outperforms the LCT method, reproducing detailed

geometric features (see supplemental material).

5.3 Inverse rendering

Our optimization pipeline estimates surface points, normals, and

albedo by using only the input transient measurements. Figure 8

illustrates our volumetric intensity, as well as surface points, nor-

mals and albedo in the confocal synthetic scene Bunny made of

two different surface albedos 1.0 (top) and 0.3 (bottom). Our method

is consistent when estimating spatially-varying albedo, while not

affecting the estimation of detailed surface points and normals.

Figure 9 demonstrates our inverse rendering results on real

scenes. As shown in a confocal scene SU (first row) and two non-

confocal scenes 44i (second row) andNLOS (third row), we correctly

estimate the albedo of objects with uniform reflectance properties

(second column), although they undergo different attenuation fac-

tors due to being at different distances from the relay wall. The

result of the NLOS non-confocal scene (third row) shows the albedo

throughout the entire surface is almost identical. Our estimation

of surface points and normals (third and fourth columns) is able to

accurately reproduce the structure of the hidden geometry.

In Figure 1, we illustrate the benefits of our inverse rendering

optimization on the real scene Bike. The first row shows the first

iteration of the optimization, which uses the volumetric output by

Liu et al. [2020] with the default parameters of the illumination

function. The resulting noise heavily degrades the geometry and

normal estimation (top-right), and the albedo is wrongly estimated

at empty locations in the scene despite the lack of a surface at such

locations (top center). After our optimization converges (bottom

row), the albedo is estimated only at surface locations, yielding a

clean reconstruction of the bike’s surface points and normals.

5.4 Geometry accuracy

In Figure 10, we compare the reconstructed geometry with sur-

face normals in two real scenes (34 and SU) using D-LCT [Young

et al. 2020], NeTF [Shen et al. 2021], a differentiable rendering ap-

proach [Plack et al. 2023], and our method. Existing methods fail

to reproduce detailed surface features in both scenes, such as the

subtle changes in depth of the numbers. Plack’s method (fourth

column) fails to reproduce the partially occluded U-shaped object

and some regions of the S-shaped object in the SU scene. D-LCT

(second column) succeeds in reproducing the U-shaped object but

fails to reconstruct the detailed geometry of the boundary of the

letters. While NeTF [Shen et al. 2021] (third column) is capable

of reproducing the U-shaped object, their methodology, based on

positional encoding and neural rendering, suppresses geometric

details significantly, producing a coarse geometry. Plack’s method

faces similar challenges in reproducing geometric details due to the

constraints imposed by the resolution of the explicit proxy geome-

try. Previous optimization-based methods that also rely on explicit
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geometry [Iseringhausen and Hullin 2020; Tsai et al. 2019] share

similar limitations. Our method based on implicit surface repre-

sentations is able to handle partial occlusions while reproducing

detailed features of the surfaces, such as the depth changes on the

numbers and the narrow segments of the letters.

In Figure 11, we provide quantitative comparisons between our

estimated geometry and the geometry obtained fromD-LCT [Young

et al. 2020], NeTF [Shen et al. 2021] and Plack et al. [2023] for three

synthetic scenes,Dragon, Erato, and Indonesian, using the Haus-

dorff distance map as an objective metric. In terms of geometric

accuracy, we outperform all three methods in Erato, and Dragon,

as shown in the RMSE table. Our improvements are especially no-

ticeable in self-occluded regions and in the reproduction of detailed

features. While Plack et al. [2023] yields a lower RMSE in the In-

donesian scene, note that it fails to reproduce large regions on the

sides of the geometry. Thus, RMSE is only computed on the recon-

structed regions and may not fully represent the overall accuracy

of the reconstruction.

6 DISCUSSION AND FUTUREWORK

We have presented an efficient and fully-differentiable end-to-end

NLOS inverse rendering pipeline, which self-calibrates the imaging

parameters using only the input-measured transient illumination.

Our method is robust in the presence of noise while achieving

enhanced scene reconstruction accuracy.

Even though forward automatic differentiation (AD) is known to

bememory efficient, we implemented our pipeline using reverse AD,

as we found it to be 20 times faster and showed better performance

when optimizing a large number of parameters (such as per-voxel

albedo), and supports a wider set of differentiable functions required

for our context.

Phasor-field NLOS imaging can be performed analogously using

temporal- or frequency-domain operators [Liu et al. 2020, 2019].

However, operating in the temporal domain introduces large mem-

ory constraints that are impractical on a differentiable pipeline.

Our pipeline therefore operates in the frequency domain to per-

form NLOS imaging, which provides practical implementation of

convolutions of complex-valued phasor-field kernels within GPU

memory constraints. While we based volumetric NLOS imaging on

phasor-based operators and kernels, an interesting avenue of future

work may be optimizing alternative kernel parameterizations or

implementing other differentiable NLOS imaging approaches.
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Figure 7: Reconstructed volumetric intensity comparison using the Resolution (left) and Bike (right) real scenes captured

under increasing exposure times of 10, 30, 60, and 180 minutes. Existing methods [Lindell et al. 2019; Liu et al. 2020; O’Toole et al.

2018] (first to third columns) fail to reproduce details on the resolution chart across all exposure times, and yield high-frequency

noise in the reconstructions due to low SNR in the Bike datasets. Our method (last column) converges to imaging parameters

that produce the sharpest results robustly under different exposure times, without requiring manual parameter tuning.
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Figure 8: Our optimization scheme estimates spatially-varying albedo in a consistent manner, without affecting the surface and

normal estimation. From left to right: Synthetic Bunny scene with two different albedos (0.3 and 1.0), our converged volumetric

intensity, the optimized albedo, and the estimated geometry.
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Figure 9: Our inverse rendering results with confocal real scene SU and non-confocal scenes 44i and NLOS. Our approach uses

transient measurements to reconstruct surface albedo (second column), geometry (third column), and normals (fourth column),

estimating them correctly on multiple isolated objects at different distances.
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Figure 10: Comparison of the geometry estimation in two real scenes 34 and SU. From left to right: D-LCT [Young et al. 2020],

NeTF [Shen et al. 2021], the differential renderer [Plack et al. 2023], and our result. Our method can reconstruct more accurately

detailed features such as the depth changes of the numbers, or reproduce narrow segments of the letters, while other methods

yield coarse reconstructions or even fail to reproduce partially occluded objects.
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Figure 11: We perform a quantitative comparison of our surface reconstruction with Young et al. [2020], Shen et al. [2021] and

Plack et al. [2023] using synthetic transient data with ground truth geometries Dragon, Erato, and Indonesian. We quantify

the introduced errors using the Hausdorff distance between the ground truth geometry and the estimated geometries. Our

method yields the smallest RMSE in Erato and Dragon, noticeable in highly-detailed areas. Note that while Plack et al. [2023]

has smaller RMSE in Indonesian, the reconstructed surface is missing significant regions of the ground truth geometry, which

are not quantified by the RMSE.
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