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Fig. 1. Polarimetric diffuse vs. specular light transport. Two linear polarization filters are installed in front of a unpolarized projector and a camera. (a) The
diffuse component of the polarized light is reflected on the object surface. The coordinate basis of the incident light stoke vector is converted to the incident
coordinate system and then transformed to that of the camera. (b) According to the microfacet theory, the specular component is reflected on the facet
surface, of which normal is same as the halfway vector. The coordinate basis of the incident stoke vector is converted w.r.t. the incident coordinate system,
where the microfacet normal stands. (Insets) The incident/exitant rotation angles show rotation transformations about the z-axis, which is the direction of the
light propagating.
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1 FOUNDATIONS OF POLARIZATION

1.1 Mueller Transformation

Converting Coordinate Systems. A stoke vector of a light ray
is defined with respect to a vector coordinate system, where the
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z-axis is aligned along the propagation direction of the light, the
orientations of the x and y axes vary depending on the polarization
state of the light. Before applying any transformation on a stoke
vector, the coordinate system of the stoke vector should be adjusted
to the same system of the transformation. Figure 1 depicts examples
of the conversion of polarization coordinate systems.
We employ a coordinate rotation Mueller matrix for converting

coordinate systems before applying a Mueller matrix to the stoke
vector of the polarized light [Collett 2005]. A coordinate rotation
Mueller matrix C rotates a stoke vector by the counter-clockwise
angle ϑ about the z-axis, of which direction indicates the propagat-
ing direction of the light. The rotation matrix is mainly used for
transforming a stoke vector coordinate system to that of a Mueller
transformation matrix that we are applying:

C (ϑ ) =


1 0 0 0
0 cos 2ϑ sin 2ϑ 0
0 − sin 2ϑ cos 2ϑ 0
0 0 0 1

 . (1)

In case of diffuse polarization, Ci→n (−ϕi ) is the conversion matrix
from the coordinate system of the polarized light to the system
of the incident polarization that is the incident coordinate system
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(with the plane of incidence that holds normal n), where the Fres-
nel/unpolarized Mueller matrices are defined. Cn→o (ϕo ) is the con-
version matrix from the exitant polarization system to the cam-
era polarization system. Before applying the Mueller matrices, the
coordinate system should be transformed from the yi axis of the
coordinate system of the incident light stoke vector to the yn,i axis
of the incoming surface coordinate system (by rotating it with an
angle of −ϕi about the z-axis) and then transformed from the yn,o
axis of the outgoing surface stoke vector to theyo axis of the camera
coordinate system (by rotating it with ϕo ).
In case of specular polarization, where Ci→h (−φi ) is the coor-

dinate conversion matrix from the light ray (xi ,yi ) to the plane
of incidence (that holds the halfway vector h of the microfacet
normal) (xh,i ,yh,i ), where the Fresnel Mueller reflection matrix
is defined, and Ch→o (φo ) is the conversion matrix from the facet
normal (xh,i ,yh,i ) to the camera (xo ,yo ).

Fresnel Matrices. A Fresnel matrix can be used for formulating
either transmission or reflection of the polarized light in a form of a
Mueller matrix FF∈{T, R} :

FF∈{T, R} =


F⊥+F ∥

2
F⊥−F ∥

2 0 0
F⊥−F ∥

2
F⊥+F ∥

2 0 0
0 0

√
F⊥F ∥ cosδ

√
F⊥F ∥ sinδ

0 0 −
√
F⊥F ∥ sinδ

√
F⊥F ∥ cosδ


, (2)

where F can be either Fresnel transmission coefficients T or reflec-
tion coefficients R, and the δ is the retardation phase shift between
the perpendicular and parallel waves, either π or 0. For a dielectric
surface, cosδ = −1when the incident angle is less than the Brewster
angle; cosδ = 1, otherwise, and vice versa for sinδ . Here T⊥ and
T ∥ are the Fresnel transmission coefficients for the perpendicular
(denoted by ⊥) and the parallel (∥) components, respectively. When
calculatingT⊥ andT ∥ , θ1 and θ2 are the incident and exitant angles,
and η1 and η2 are the refractive indices of the medium before and
after the interface, respectively.

In our diffuse reflectance model, when we calculate incident Fres-
nel transmission coefficients, η1 and η2 are set to 1.0 and the object
refractive index η, respectively. cosθ1 and cosθ2 are defined as

cosθ1 = n · i and cosθ2 =
√
1 − ((1/η) sinθi )2, respectively. In case

of exitant transmission coefficients, η1 and η2 are switched as the
object refractive index η and 1.0, respectively. cosθ1 and cosθ2 are

defined as cosθ1 =
√
1 − ((1/η) sinθ2)2 and cosθ2 = n · o, respec-

tively following Snell’s law. In addition, as a consequence of the
conservation of energy, both R⊥, ∥ and T⊥, ∥ satisfy: T⊥ + R⊥ = 1
and T ∥ + R ∥ = 1.

Depolarization Matrix. The light absorbed by the object surface
is completely unpolarized due to subsurface scattering with the
object pigments. The diffuse absorption is formulated as a 4-by-
4 depolarization scattering Mueller matrix D, where the top-left
element is the diffuse albedo ρ, and the rest of elements are zero.

D =


ρ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (3)

where ρ corresponds to the diffuse albedo. We also adopt the depo-
larization matrix D in our diffuse reflection model.

Linear Polarizer Matrix. A Mueller transmission matrix L with a
linear polarization angle ϑ is formulated as:

L (ϑ ) = 1
2


1 cos 2ϑ sin 2ϑ 0

cos 2ϑ cos2 2ϑ cos 2θ sin 2θ 0
sin 2ϑ cos 2θ sin 2ϑ sin2 2ϑ 0
0 0 0 0

 . (4)

2 FACET DISTRIBUTION & GEOMETRIC ATTENUATION
GGX distribution function D [Walter et al. 2007] is as follows:

D(θh ;σ ) =
σ 2

πcos4θh
(
σ 2 + tan2θh

)2 , (5)

where σ is the roughness parameter.
SmithG function [Heitz 2014] accounts for themasking-shadowing

effect as follows:

G(θi ,θo ;σ ) =

(
2

1 +
√
1 + σ 2tan2θi

) (
2

1 +
√
1 + σ 2tan2θo

)
. (6)

Since the geometric terms, both D and G, determine how many
microfacets are observed from the given view direction, these geo-
metric terms are therefore independent of polarization.

3 POLARIMETRIC DECOMPOSITION
In advance to estimate both appearance and normals, we generate
the polarimetric shading matrix H from at least nine polarimetric
images with different angle of the linear filters. To this end, we solve
an overdetermined system:

minimize
H

∥I − Φᵀ
o HΦi∥

2
2 . (7)

While Equation (7) is a per-pixel optimization, we can solve it effi-
ciently by reformulating Equation (7).

TensorReformulation forDecomposition. Wedenote H̄ ∈ RN×4×4

as a tensor consisting of polarimetric shading matrices H for ev-
ery pixel, where N is the number of pixels. Captured intensities of
every pixel is described as Ī ∈ RN×n×m . First, we repack the ten-
sor Ī as a matrix, of which dimension is Ī ∈ Rn×Nm . Intermediate
matrix H̄′ ∈ R4×Nm is then estimated by solving the standard least-
square optimization: minimizeH̄′ ∥ Ī − Φᵀ

o H̄′∥22 . Second, we repack
the estimated H̄′ as the dimension of Rm×4N and solve another
optimization problem: minimizeH̄ ∥H̄′ − H̄Φi∥

2
2 , where H̄ ∈ R4×4N

is the polarimetric shading matrix for every pixel. Per-pixel polari-
metric shading matrix H is finally obtained by repacking H̄ as the
dimension of RN×4×4.

4 NORMAL ESTIMATION
Our normal estimation consists of two stages where each stage
exploit diffuse polarization and specular reflection respectively. In
this supplemental material, we describe optimization details of each
stage. For intuition and definition of terms, refer to the main paper.

Diffuse Normals. Diffuse polarization provides surface azimuth
and zenith information with ambiguity [Kadambi et al. 2015]. Since
we can estimate refractive index by jointly analyzing both the diffuse

ACM Trans. Graph., Vol. 37, No. 6, Article 268. Publication date: November 2018.



Simultaneous Acquisition of Polarimetric SVBRDF and Normals • 268:3

and the specular reflection, we can resolve the zenith ambiguity
which comes from the unknown refractive index of materials. In
order to resolve the remaining ambiguity of azimuth angle, we solve
the following optimization function:

minimize
N

αd
{
∥W (ON − Cz )∥

2
2 + ∥WAN∥22

}
+βd ∥GN − Nb∥

2
2 + γd ∥∇N∥22 ,

(8)

We then compute the derivative of the objective function with re-
spect to N and set it as zero to obtain the following equation:(

αdOᵀWᵀWO + αdAᵀWᵀWA + βdGᵀG + γdKᵀK
)

N

=
(
αdOᵀWᵀWCz + βdGᵀNb

)
,

(9)

where Cz is the stacked matrix of cos (θz ) for every pixel and K
is the matrix-form of the spatial gradient operator. We solve this
equation in terms of N using gradient descent. Note that Equation (8)
does not have unit-norm constraint for the surface normals. Since
the constraint is non-linear with respect to the normals, we enforce
it as a iterative approach solving Equation (8) and applying the
unit-norm constraint iteratively. We empirically found that two
iterations are sufficient to meet the constraint.

Specular Normals. In addition to having diffuse normal, we boost
the surface normals for the region where zenith angle becomes close
to zero by means of specular information. To this end, we solve the
following optimization:

minimize
N

αs ∥W (ΨN − Ch)∥
2
2 + βs ∥W∇N∥22

+γs ∥(1 − W) (N − N′)∥
2
2 ,

(10)

Computing the derivative with respect to N leads us to have the
following equation:(

αsΨᵀWᵀWΨ + βsKᵀWᵀWK + γs (1 − W)ᵀ(1 − W)
)

N

=
(
αsΨᵀWᵀWCh + γs (1 − W)ᵀ(1 − W)N′

)
,

(11)

where Ch is the stacked matrix of cos (θh ) for every pixel. Similar
to diffuse normals, we also solve it using gradient descent and apply
unit-norm constraint in a iterative manner.

IntegratingNormals fromRGBChannels. We can estimate nor-
mals from diffuse polarization for each color channel resulting in
three different surface normals. Even though the estimated sur-
face normals from different channels should be identical, we ob-
serve some difference between the surface normals due to SNR and
wavelength-dependent scattering. We integrate the three normals

from diffuse polarization through weighted averaging: n =
3∑
i=1

Cini ,

where Ci is the weight of each color channel that penalizes the

low SNR diffuse signal: Ci = Hd
00/

3∑
i=1

Hd
00,i . We used the averaged

weight Ci per each material to be robust to noise.

5 ANALYSIS OF POLARIMETRIC REFLECTANCE MODEL
We here analyze each term of H shown in Figure 2 compared to our
polarimetric model in details to further understand its characteris-
tics. H00 shows both the diffuse and specular intensities which is
well matched with our model: ρT+o T+i + KR

+. H11,22 mainly show
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Fig. 2. Polarimetric shading matrix H of our real samples.

specular intensities and the two elements are similar to each other
while the values are negative for (2,2). This observation is aligned
with our model stating that the (1,1) and (2,2) elements can be mod-
eled as KR+ and −KR+. H10,20 are related to the linear polarization
state of the exitant light rays after the reflection as we termed ex-
itant polarization. They exhibit low level of intensities compared
to the diagonal components as expected in our modeling because
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of the Fresnel different term T−
o . However, still we can see clear

dependency on the surface azimuth. Our model explains this effect
with βo and αo which are the cosine and sine values of the surface
azimuthal angle. Also, we can observe that the intensity values be-
come low for the surface where the zenithal angle becomes zero.
This can be also explained by our model; T−

o becomes close to zero
when the surface zenith towards the camera. H01,02 correspond to
the incident polarization describing how the polarization state of the
incoming light affects the intensity of the captured image. Similar
to the elements (1,0), (2,0), we can observe the dependency on the
surface azimuth and zenith. However, these elements seem more
sensitive to the color of the object pigments showing clear bluish
color on the negative values. H12,21 deviate from our approximated
model of the coaxial setup where they have visible negative intensi-
ties. However, note that our model under the real setup explains this
phenomena well shown in Figure 2. Because of the difference, we
do not make use of these element as inputs of the inverse rendering
algorithm.

6 NOTATIONS TABLE
Table 1 provides the notations used in the main paper.
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Symbol Description

M
ue
lle
rM

at
rix
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d
St
ok
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ct
or

M General Mueller matrix
P pBRDF
Pd,s Diffuse/specular pBRDF
H Polarimetric shading
Hd,s Diffuse/specular polarimetric shading
Ci→n Coordinate conversion Muller matrix from light to plane of incidence
Cn→o Coordinate conversion from plane of incidence to camera system
FTi,o Incident/exitant Fresnel transmission matrix.
FR Fresnel reflection matrix.
D depolarization matrix
L Linear polarizer
ℓ First column of L
Φi,o Stacked matrix of ℓ for incident/exitant polarizers
s General Stokes vector consisting of four elements: [s0, s1, s2, s3]
sbefore Stokes vector before an event
safter Stokes vector after an event
si,o Stokes vectors of the light incident/exitant to an object surface.

G
eo
m
et
ry

yi,o y-axis of the illumination/camera coordinate system.
n, N Normals of a pixel and its Matrix form for every pixel
nb, Nb Normals from structured light and its Matrix form for every pixel
i Illumination vector
o, O View vector and its Matrix form for every pixel
h, Ψ Half way vector and its matrix form for every pixel
hi,o Projections of h to the incident/exitant polarization plane
θi,o Zenith angle between normals and the incident/exitant light
θh Zenith angle between normals and halfway vector
θd Zenith angle between incident light and halfway vector
ϕi,o Azimuth angle between the object plane of incidence

and the y-axis of the incident/exitant
φi,o Azimuth angle between the micro-facet plane of incidence

and the y-axis of the incident/exitant light
ϑi,o Angle of the incident/exitant polarizers
αi,o αi,o = sin(2ϕi,o )
βi,o βi,o = cos(2ϕi,o )
χi,o χi,o = sin(2φi,o )
γi,o χi,o = cos(2φi,o )

Re
fle
ct
an
ce

ρ Diffuse albedo
ks Specular coefficient
σ Surface roughness
η Refractive index
G Smith’s shadowing/masking function
D GGX micro-facet distribution function
C Polarization-independent term of specular component

Po
la
riz

at
io
n-
re
la
te
d
va
ria

bl
es

ψ Degree of polarization
ψ d
i,o Diffuse degree of polarization of incident/exitant light
δ Phase shift
T
⊥, ∥
i Fresnel incident transmission coefficients

T
⊥, ∥
o Fresnel exitant transmission coefficients

T+i,o (T⊥
i,o +T

∥

i,o )/2
T−
i,o (T⊥

i,o −T
∥

i,o )/2
R⊥, ∥ Fresnel reflection coefficients
R+ (R⊥ + R ∥)/2
R− (R⊥ − R ∥)/2
R×

√
R⊥R ∥

In
ve
rs
e
Re

nd
er
in
g

I Pixel intensity
n,m Number of incidnet/extitant angles of polarizers
B Number of clusters
w Mask map of a cluster
W Confidence function penalizing pixels, of which normal is close to h
W Matrix form ofW for every pixel
W ′ Confidence function weighting pixels with strong specular
W′ Matrix form ofW ′ for every pixel
G Gaussian blur matrix
Cz Matrix-from of cosine values with the zenith angle
A Collinearity matrix
S Half way angle-dependent function in Hs

00

Table 1. Symbols and notations used in the paper.
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