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Fig. 1. Real-time rendering of polarized light has been unavailable due to its higher dimensional space of polarized light. We introduce a new frequency-domain
analysis of polarized light transport and propose a new method, called polarized spherical harmonics, based on the spin-weighted spherical harmonics theory
in physics. Our method provides a rotation-invariant representation and spherical convolution of Stokes vector fields, enabling efficient simulation and
reproduction of polarized light interactions We demonstrate the first real-time polarization rendering under polarized environmental illumination through
polarized spherical harmonics. Refer to the supplemental video for real-time video results.

The objective of polarization rendering is to simulate the interaction of
light with materials exhibiting polarization-dependent behavior. However,
integrating polarization into rendering is challenging and increases compu-
tational costs significantly. The primary difficulty lies in efficiently modeling
and computing the complex reflection phenomena associated with polar-
ized light. Specifically, frequency-domain analysis, essential for efficient
environment lighting and storage of complex light interactions, is lack-
ing. To efficiently simulate and reproduce polarized light interactions using
frequency-domain techniques, we address the challenge of maintaining con-
tinuity in polarized light transport represented by Stokes vectors within
angular domains. The conventional spherical harmonics method cannot
effectively handle continuity and rotation invariance for Stokes vectors. To
overcome this, we develop a new method called polarized spherical har-
monics (PSH) based on the spin-weighted spherical harmonics theory. Our
method provides a rotation-invariant representation of Stokes vector fields.
Furthermore, we introduce frequency domain formulations of polarized
rendering equations and spherical convolution based on PSH. We first define
spherical convolution on Stokes vector fields in the angular domain, and
it also provides efficient computation of polarized light transport, nearly
on an entry-wise product in the frequency domain. Our frequency domain
formulation, including spherical convolution, led to the development of the
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first real-time polarization rendering technique under polarized environ-
mental illumination, named precomputed polarized radiance transfer, using
our polarized spherical harmonics. Results demonstrate that our method can
effectively and accurately simulate and reproduce polarized light interac-
tions in complex reflection phenomena, including polarized environmental
illumination and soft shadows.

CCS Concepts: • Mathematics of computing → Functional analysis; •
Computing methodologies→ Rendering; Appearance and texture repre-
sentations.

Additional KeyWords and Phrases: spherical harmonics, polarized rendering,
polarimetric imaging, polarimetric appearance, theory of light transport,
basis function
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1 INTRODUCTION
Polarization, imperceptible to the human eye, offers a wealth of
auxiliary information about an object’s shape and physically mean-
ingful material characteristics. Consequently, polarization has been
increasingly exploited in both the fields of computer graphics and
vision for tasks of geometry modeling and appearance acquisi-
tion in recent years. It has shown extensive applications, including
multispectral ellipsometry to obtain a polarimetric bidirectional
reflectance distribution function (pBRDF) dataset [Baek et al. 2020],
inverse rendering for acquiring polarimetric appearance and ge-
ometry [Baek et al. 2018; Hwang et al. 2022], and physically-based
polarization rendering through the synthesis and analysis of polar-
ized light transport [Jakob et al. 2022].
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Polarization rendering, as opposed to traditional rendering that
calculates light intensity, necessitates additional computation of
further information. First, polarization rendering simulates a four-
dimensional vector that consists of light intensity, two linear polar-
izations in horizontal/vertical and diagonal/antidiagonal directions,
and circular polarization, commonly represented as a Stokes vector.
This fully characterizes the polarization state of light as it travels
along a ray. Second, different from the conventional vector, the
Stokes vector physically quantifies the sinusoidal oscillation of light
waves. Consequently, when the coordinate system rotates, the el-
ements of the Stokes vector change at a rate twice as fast as the
components of a conventional vector change. It is critical to account
for this fact when transforming a Stokes vector for polarized light
simulation. Third, the unique features of polarization rendering
not only escalate the computational expenses significantly but also
necessitate special transformation. The Stokes vector is determined
within a local coordinate system of the progressing ray. Therefore,
the polarimetric reflectance function must be configured in accor-
dance with the coordinate systems of the incident and exitant Stokes
vectors. This implies that additional coordinate conversions are re-
quired for polarization rendering. Lastly, the formulation of the
polarimetric reflectance must consider both the incident and exi-
tant Stokes vectors. This process is often presented as a Mueller
matrix, a structure of sixteen components arranged in a four-by-
four matrix format, of which components change depending on the
incident/exitant light angles. The complexity of this matrix makes
it sixteen times larger than a scalar value used in conventional re-
flectance functions, significantly increasing the computational cost
of ray samples in polarization rendering [Wilkie and Weidlich 2012].
Due to the unique attributes of Stokes vectors in the represen-

tation of light polarization, conventional frequency-domain analy-
sis of environment lighting [Ramamoorthi and Hanrahan 2001b],
does not guarantee smooth transformations and invariance under
rotations in polarization rendering. Moreover, the process of ren-
dering specular reflections using spherical harmonics (SH), which
necessitates spherical convolution [Sloan et al. 2002], functions effi-
ciently for scalar fields that do not change under rotation. However,
these conventional spherical harmonics cannot be applied for the
transportation of polarized light. This is because, in polarization
rendering, light is represented not as a scalar intensity but as a
Stokes vector. In this work, we focus on addressing the following
two main challenges with the goal of facilitating real-time polariza-
tion rendering via frequency-domain analysis.

Rotation invariance. Different from the conventional SH-based
rendering that computes light intensity as a scalar value on a sphere,
polarization rendering needs to simulate a Stokes vector field on a
sphere. However, dealing with Stokes vector fields using conven-
tional basis functions, including SH, which are designed for scalar
fields, results in a singularity problem. This is commonly known
as the Hairy Ball Theorem [Nash and Sen 1983]. Representing a
Stokes vector field using conventional SH requires separating it into
four scalar fields and one frame field, which assigns local frames
for tangent planes for each point on a sphere. The Hairy Ball Theo-
rem implies we cannot assign a smooth and consistent direction of
unit tangent vectors at every point on the sphere without at least

one singular point, so that the resulting Stokes vector field com-
bined with continuous scalar basis functions should have a singular
point. This is a critical problem for rotation transformation in light
transport. For instance, suppose we want to rotate Stokes vector
fields by transforming basis functions. The transformation cannot
guarantee the rotation invariance because this operator to the basis
functions will create another singularity point in another location
on the sphere.

To address the issue of rotation invariance in polarization render-
ing, we introduce a new method utilizing a spin-weighted spherical
harmonics (SWSH) theory [Scanio 1977] in physics. These SWSH
serve as orthonormal basis functions, and they can be classified
based on how different spin fields behave on a sphere. The spin-0
spherical harmonics, which are equivalent to traditional spherical
harmonics, represent scalar fields that remain unchanged under
the rotation of local frames. On the other hand, spin-1 spherical
harmonics represent vector fields on a sphere. These can transform
under rotations in the same way as a typical vector, which indicates
they possess a certain spin orientation. Finally, spin-2 spherical har-
monics (S2SH) represent fields of such quantities as neither scalar
nor ordinary vectors, which are characterized as multiple directions
associated with each point, mirroring the properties of Stokes vector
fields. To resolve the fundamental rotation invariance problem in
polarization rendering, we employ S2SH, which handles Stokes vec-
tor fields by extending the domain of the basis function space from
the sphere to the frame space while maintaining a spin-2 constraint,
rather than improperly separating them into scalars and frame fields
with singularity. This approach paves the way for real-time polar-
ization rendering.

Spherical convolution. To accomplish efficient real-time rendering
of specular reflection in conventional rendering, SH-based rendering
has utilized the scalar spherical convolution of light intensity [Sloan
et al. 2002]. For real-time polarization rendering to be feasible, it
is also crucial to establish a spherical convolution of Stokes vector
fields. In polarization rendering, the input and output for spherical
convolution are represented as Stokes vectors. Therefore, the con-
volution kernel needs to be defined as a Mueller matrix. However,
we observe that the Mueller matrix domain should have only one
degree of freedom of the zenith angle of the kernel in relation to the
zonal axis of spherical harmonics when generalizing conventional
spherical convolution as rotation equivariant linear operators. The
spherical convolution of a Mueller matrix to Stokes vector fields,
which we formulate in this paper, has not yet been addressed in the
field of computer graphics research.
We, therefore, introduce a new frequency-domain method for

spherical convolution for Stokes vector fields. This method allows
for the efficient yet precise convolution of approximated Stokes
vectors, thereby enabling real-time rendering of polarized light. Our
approach, which is based on polarized spherical harmonics (PSH),
facilitates efficient computation, operating nearly on an element-by-
element product basis. To this end, we jointly combine the spin-0 and
spin-2 cases of spin-weighted spherical harmonics, incorporating a
new theory concerning the frequency-domain analysis of pBRDF
and spherical convolution of Stokes vector fields.
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Further, we demonstrate a real-time technique for polarization
rendering, the so-called precomputed polarized radiance transfer
(PPRT), using our polarized spherical harmonics. See Figure 1 for an
example. Our proposed method can efficiently and accurately simu-
late and replicate the approximated interactions of polarized light in
complex reflection phenomena, including polarized environmental
illumination and soft shadows.

2 RELATED WORK

2.1 Spherical Harmonics
A frequency-domain framework using spherical harmonics is in-
troduced by Ramamoorthi and Hanrahan [2001a; 2001b] to com-
puter graphics community. They represent environment maps [Ra-
mamoorthi and Hanrahan 2001a] into SH coefficients and render
environment map lighting by the product of coefficient vectors.
Extending SH coefficients of diffuse albedo to store radiance self-
transfer, including self-shadow and interreflection, their framework
has been extended to precomputed radiance transfer (PRT) [Sloan
et al. 2002]. The PRT method has various extensions which deal
with dynamic shadow [Zhou et al. 2005], deformable objects [Sloan
et al. 2005], and polygonal lights [Wang and Ramamoorthi 2018; Wu
et al. 2020]. Benefits of some of these methods come from not only
algorithmic enhancement but also analytic integrals related to SH,
such as triple product [Zhou et al. 2005] and integrals on spherical
polygons [Wang and Ramamoorthi 2018]. We refer to Kautz et al.
[2005] and Ramamoorthi et al. [2009] for more history and overview
of the field of precomputation-based rendering. Note that not only
real-time rendering methods, application of SH to rendering also
include physically based ray tracing [Belcour et al. 2018], which
uses SH products as control variates and inverse rendering of re-
flectance [Ramamoorthi and Hanrahan 2001b] which projects BRDF
and normal vectors into SH coefficients.
Other bases for spherical functions, including the Haar wavelet

[Lessig and Fiume 2008; Ng et al. 2003, 2004], spherical Gaussians
[Ritschel et al. 2012], and neural bases [Xu et al. 2022] have been
discussed. Still, only spherical harmonics simultaneously hold or-
thonormality, rotation invariance, and a coefficient-wise product of
spherical convolution. There is another recent approach to learning
basis functions on the sphere rather than defining analytically by Xu
et al. [2022], but their work produces no genuine basis that should
satisfy linearity.
While SH provides a wide range of applications in computer

graphics, as discussed above, there has been no extension of any of
these methods to polarized light transport due to the difficulty of
the continuity structure of Stokes vector fields.

2.2 Polarization
Polarization has played an important role in computer graphics. For
example, polarized illumination enhances the reconstruction quality
of 3D geometry and reflectance [Ba et al. 2020; Ghosh et al. 2011;
Kadambi et al. 2015]. In addition, rendering [Jarabo and Arellano
2018; Mojzík et al. 2016] and reconstructing in both explicit geome-
try [Baek et al. 2018; Hwang et al. 2022] and radiance fields [Kim et al.
2023] polarized quantities themselves have also been investigated re-
cently. These problems handle polarized appearance, which captures

what traditional scalar intensity-based appearance has not done and
has been addressed as challenging problems due to more parame-
ters and unconventional coordinate conversion problems. However,
no frequency-domain methods have been developed. Jarabo and
Arellano [2018]; Mojzík et al. [2016] introduce polarized ray tracing
methods that consider the light source and material appearance as
Stokes vectors and Mueller matrices, respectively, but there are no
precomputed methods through basis functions that achieve real-
time performance. Baek et al. [2020] captured image-based pBRDF
datasets, but there is still a lack of methods of how to render their
materials in runtime efficiently. In this context, we propose a new
frequency-domain framework of polarized light transport, which
implies polarized precomputed rendering, so that our novel render-
ing method achieves real-time performance and provides a novel
way to render Baek et al. [2020]’s data-based pBRDF.

Certain studies have utilized polarized gradient illumination to
capture the appearance of objects [Ghosh et al. 2009, 2011; Ma et al.
2007], which is related to spherical harmonics up to order 2. The
utilization of polarized light in these studies is specific to scenarios
where it is necessary to separate two scalar fields of diffuse and
specular reflection. However, bases of Stokes vector fields have not
been addressed in these studies.

Theworksmentioned above, including this one, useMueller calcu-
lus formulations to deal with polarized light. However, physical light
transport methods, such as those presented in recent works [Stein-
berg et al. 2022; Steinberg and Yan 2021a,b], have introduced a gen-
eralized Stokes parameters formulation based on optical coherence
theory. This formulation combines the strengths of both Mueller
and Jones calculus. However, it does not address the challenges in
the angular domain, and its contributions are not relevant to our
current scope.

For more concepts, history, and applications in computer graphics
of polarization, we refer to Collett [2005], Wilkie and Weidlich
[2012], and Baek et al. [2023].

2.3 Spin-Weighted Spherical Harmonics
Spin-weighted spherical harmonics theory is originally introduced
by Goldberg et al. [1967]; Newman and Penrose [1966] to handle
the symmetry of gravitational radiation in physics. Zaldarriaga
and Seljak [1997] point out that spin-2 SH can encode the all-sky
information of polarized light to the frequency domain in the con-
text of the cosmic microwave background. Rotation invariance and
coefficient rotations of SWSH are shown by Boyle [2013].

Note that SWSH has also been referred to as generalized spherical
harmonics in some literature [Garcia and Siewert 1986; Keegstra
et al. 1997; Kuščer and Ribarič 1959; Phinney and Burridge 1973],
and the relation between these names is pointed out by Rossetto
[2009].
While SWSH formulation of Stokes vector fields already exists,

to the best of our knowledge, we first formulate linear operators on
Stokes vectors, including pBRDF, into SWSH coefficients.

Zaldarriaga and Seljak [1997] and Ng and Liu [1999] establish the
SWSH formulation of the correlation operation between two Stokes
vector fields in the perspective to analyze statistics of given data.
While the correlations have some similarities to convolutions, these
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are inherently different operations in terms of types of inputs and
outputs.We focus on the convolution operation from the perspective
of image processing and computer graphics, especially PRT.

Spherical convolution of Stokes vector fields has been discussed
in Garcia and Siewert [1986], Ng and Liu [1999], and Tapimo et al.
[2018]. However, their formulations are subsets of our formulation
of polarized spherical convolution. Specifically, their polarized con-
volution kernels have one degree of freedom (DoF) [Ng and Liu
1999] or six DoF [Garcia and Siewert 1986; Tapimo et al. 2018] for
each frequency band, while ours has 16 DoF. Based on this gen-
eralization, we first discover that polarized spherical convolution
is equivalent to rotation equivariance linear operators on Stokes
vector fields, with a proper sense of such linearity.

We refer to Section 8.3 for a more technical description of our
novelty against existing work on SWSH.

3 OVERVIEW
The following is a brief outline of our paper’s organization. In Sec-
tion 4, we provide the theoretical foundations of traditional spheri-
cal harmonics, spherical convolution, and polarization of light in
Mueller calculus. This section is included for the sake of readability,
but expert readers may skip it, while Section 4.2.1 gives a brief intro-
duction to the mathematical notations used in this paper. It will help
the readers to understand the mathematical concepts presented in
the paper. In Section 5, we discuss the challenges of applying exist-
ing spherical harmonics to Stokes vector fields. Our main method
is presented in Section 6, which consists of the polarized spherical
harmonics theory (Section 6.2) and polarized spherical convolution
(Section 6.4). In Section 7, we demonstrate the first real-time polar-
ized rendering method, followed by a discussion in Section 8 and a
conclusion in Section 9. Tables 1 and 2 provide notations, symbols,
and operators used in this paper. We also make our code avail-
able on our project website (https://vclab.kaist.ac.kr/siggraph2024/),
which includes a step-by-step tutorial to help understand various
quantities and equations.

4 BACKGROUND

4.1 Spherical Harmonics
This subsection briefly reviews the definition and core properties
of spherical harmonics. In Supplemental Sections 1.4 and 2, we
additionally provide a general theory of function spaces and bottom-
up mathematical description of SH, including how some properties
of SH are inherited from the general theory.
Spherical harmonics are spherical functions 𝑌𝑙𝑚 ∈ F

(
Ŝ2,C

)
,

where F
(
Ŝ2,C

)
B

{
𝑓 : Ŝ2 → C

}
, which can be evaluated in spher-

ical coordinates (𝜃, 𝜙) as follows:

𝑌𝑙𝑚 (𝜃, 𝜙) = 𝐴𝑙𝑚𝑃𝑚𝑙 (cos𝜃 ) 𝑒𝑖𝑚𝜙 , (1)

where𝐴𝑙𝑚 =

√︃
2𝑙+1
4𝜋

(𝑙−𝑚)!
(𝑙+𝑚)! and 𝑃

𝑚
𝑙

denotes the associated Legendre
function of order 𝑙 and degree 𝑚 (Supplemental Equation (31b)).{
𝑌𝑙𝑚 | (𝑙,𝑚) ∈ Z2, |𝑚 | ≤ 𝑙

}
is an orthonormal basis of F

(
Ŝ2,C

)
.

In other words, any spherical function 𝑓 ∈ F
(
Ŝ2,C

)
is equal to an

Table 1. Lists of notations and symbols used in this paper.

Notation

x, y, · · · ∈ R𝑁
Numeric 𝑁 -dimensional vectors, lowercase Latin
letters with boldface (including Stokes component
vector)

A,B, · · · ∈ R𝑀×𝑁 Numeric 𝑀 × 𝑁 matrices, uppercase Latin letters
with boldface (including Mueller matrices)

®𝑥, ®𝑦, · · · ∈ ®R𝑁 Geometric 𝑁 -dimensional vectors, lowercase Latin
letters accented single side arrow

®𝐴, ®𝐵, · · · ∈ ®R𝑀×𝑁 Geometric 𝑀 × 𝑁 matrices, uppercase Latin letters
accented single side arrow

↔
𝑥,

↔
𝑦, · · · ∈ S�̂�

Stokes vectors (geometric), lowercase Latin letters
accented both side arrow

↔
𝐴,

↔
𝐵, · · · ∈ M�̂�𝑖→�̂�𝑜

Mueller transforms (geometric), uppercase Latin let-
ters accented both side arrow

Symbol
�̂� ∈ Ŝ2 Directions (unit vector), where Ŝ2 is unit sphere

®F ∈ ®F3 Orthonormal frames in 3D, uppercase Latin letter F
with boldface accented single side arrow

R ∈ SO (3) Numeric 3D rotation matrices
®𝑅 ∈ −→

𝑆𝑂 (3) Geometric 3D rotation transforms
F (𝑋,𝑌 ) Function space from 𝑋 into 𝑌 , for any sets 𝑋 and 𝑌

S�̂�
Stokes space: set of all Stokes vectors of a ray along
direction �̂�

M�̂�𝑖→�̂�𝑜 Mueller space from S�̂�𝑖
to S�̂�𝑜

Operator

[s]®F =
↔
𝑠

Stokes component vector s to Stokes vector↔𝑠 w.r.t.
frame ®F[↔

𝑠
] ®F = s

Stokes vector↔𝑠 to Stokes component vector s w.r.t.
a frame ®F

[M]®F1→®F2 =
↔
𝑀

Mueller matrixM to geometric Mueller transform
↔
𝑀 w.r.t. frames ®F1, ®F2[ ↔

𝑀

] ®F1→®F2
= M Mueller transform

↔
𝑀 to numeric Mueller matrixM

w.r.t. frames ®F1, ®F2
𝑧∗ = 𝑥 − 𝑦𝑖 Complex conjugation of 𝑧 = 𝑥 + 𝑦𝑖 ∈ C
ℜ𝑧, ℑ𝑧 = 𝑥, 𝑦 Real and imaginary parts of 𝑧 = 𝑥 + 𝑦𝑖 ∈ C

R2 (𝑧 ) , C
(
[𝑥, 𝑦 ]𝑇

) Conversion between complex number 𝑧 = 𝑥 + 𝑦𝑖 ∈
C and [𝑥, 𝑦 ]𝑇 ∈ R2 (Eq. (48))

R2×2 (𝑧 ) Eq. (37), Conversion from complex number to 2D
real numeric matrix

Ciso (M) , Cconj (M) Eq. (44), Conversion from 2 × 2 real matrix M to
two complex numbers respectively

Table 2. List of rotations and inner products in various quantities.

Symbol Operand Eq. num.
®𝑅 ®𝑥 , ®𝑅®F Geometric vectors ®𝑥 ∈ ®R3, and frames ®F ∈ ®F3
®𝑅S

↔
𝑠 Stokes vectors↔𝑠 ∈ S Eq. (19)

®𝑅M
[ ↔
𝑀

]
Mueller transforms

↔
𝑀 ∈ M Eq. (59)

®𝑅F [ 𝑓 ] (�̂� ) Scalar fields 𝑓 : Ŝ2 → C Eq. (8)
®𝑅F

[↔
𝑓

]
(�̂� ) Stokes vector fields

↔
𝑓 : Ŝ2 → S�̂� Eq. (25)〈

↔
𝑠,

↔
𝑡

〉
S

Stokes vectors↔𝑠,
↔
𝑡 ∈ S�̂� (identical direction) Eq. (18)

⟨𝑓 , 𝑔⟩F Scalar fields 𝑓 , 𝑔 : Ŝ2 → C Eq. (3)〈↔
𝑓 ,

↔
𝑔

〉
F

Stokes vector fields
↔
𝑓 ,

↔
𝑔 : Ŝ2 → S�̂� Eq. (24)
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infinite number of the linear combination of SH as

𝑓 =

∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

f𝑙𝑚𝑌𝑙𝑚, (2)

and the coefficient f𝑙𝑚 is computed as

f𝑙𝑚 = ⟨𝑌𝑙𝑚, 𝑓 ⟩F
(
Ŝ2,C

) B ∫
Ŝ2
𝑌 ∗
𝑙𝑚

(�̂�) 𝑓 (�̂�) d�̂�, (3)

where the integration over the sphere Ŝ2 is defined with the solid
angle measure d�̂� = sin𝜃d𝜃d𝜙 , and 𝑧∗ indicates the complex con-
jugate of an arbitrary 𝑧 ∈ C. Note that when the domain of an
inner product is clear in context, we just write the inner product as
⟨𝑌𝑙𝑚, 𝑓 ⟩F for the sake of simplicity.
From Equation (3), a numeric vector which consists of such f𝑙𝑚

called coefficient vector, which encodes frequency-domain infor-
mation of the spherical function 𝑓 . While an infinite dimensional
coefficient vector

[
f00, f1,−1, f10, f11, · · ·

]𝑇 represents continuously
defined 𝑓 without loss of information, we can take the projection
of 𝑓 on SH up to order 𝑙max, and store it into a finite coefficient
vector

[
f00, · · · , f𝑙max,𝑙max

]𝑇 of 𝑂
(
𝑙2max

)
entries.

4.1.1 Coefficient matrix and radiance transfer. In rendering pipelines
or other frequency-domain analysis, many methods can be repre-
sented as functions of spherical functions (linear operator). SH also
represents linear operators on spherical functions into discrete co-
efficients, called coefficient matrix. Suppose that 𝑇 : F

(
Ŝ2,C

)
→

F
(
Ŝ2,C

)
be a linear operator on spherical functions. Similar to

Equation (3), the linear operator 𝑇 can be represented by discrete
SH coefficients T𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖

as

T𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖
=
〈
𝑌𝑙𝑜𝑚𝑜

,𝑇
[
𝑌𝑙𝑖𝑚𝑖

]〉
F , (4)

where the subscript 𝑖 and 𝑜 in 𝑙 and𝑚 stands for input and output.
The evaluation of 𝑇 at a function 𝑓 ∈ F

(
Ŝ2,C

)
can be considered

as a matrix-vector multiplication in the SH coefficient space as〈
𝑌𝑙𝑜𝑚𝑜

,𝑇 [𝑓 ]
〉
F =

∑︁
𝑙𝑖 ,𝑚𝑖

T𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖
f𝑙𝑖𝑚𝑖

, (5)

where
〈
𝑌𝑙𝑜𝑚𝑜

,𝑇 [𝑓 ]
〉
F is the coefficient of the output function𝑇 [𝑓 ],

obtained by Equation (3).
In computer graphics, a BRDF1 𝜌 : Ŝ2 × Ŝ2 → R can be charac-

terized by a linear operator 𝜌F : F
(
Ŝ2,C

)
→ F

(
Ŝ2,C

)
which acts

as the rendering equation:

𝜌F
[
𝐿in

]
(�̂�𝑜 ) =

∫
Ŝ2
𝜌 (�̂�𝑖 , �̂�𝑜 ) 𝐿in (�̂�𝑖 ) d�̂�𝑖 , (6)

for any incident radiance function of a direction 𝐿in. Taking the
matrix product of the SH coefficient matrix of 𝜌F , also called the
radiance transfer matrix, and the coefficient vector of 𝐿in is the core
operation in the efficient environment lighting [Ramamoorthi and
Hanrahan 2001b] and PRT [Sloan et al. 2002] methods.
Moreover, the isotropy constraint of the BRDF (in general, an

azimuthal symmetric operator) yields increasing the sparsity of SH

1We consider a cosine-weighted BRDF which already contains the term |�̂� · �̂�𝑖 | .

coefficients, which can be written with fewer indices as [Ramamoor-
thi and Hanrahan 2001b, 2002]

𝜌𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖
= 𝛿𝑚𝑜𝑚𝑖

𝜌𝑙𝑜𝑙𝑖𝑚𝑖
, (7)

where 𝛿𝑚𝑜𝑚𝑖
indicates the Kronecker delta. Note that while a gen-

eral linear operator requires𝑂
(
𝑙4max

)
SH coefficients in Equation (4),

azimuthal symmetry described in Equation (7) reduces the number
of coefficients to 𝑂

(
𝑙3max

)
.

4.1.2 Rotation invariance. One of the most important properties
of SH is rotation invariance, which allows us to efficiently con-
vert SH coefficients with respect to another frame without loss of
information.

A rotation can be considered as a linear operator. Given rotation
transform ®𝑅 ∈ −→

𝑆𝑂 (3), the rotation on spherical functions rather
than vectors is denoted by ®𝑅F : F

(
Ŝ2,C

)
→ F

(
Ŝ2,C

)
and acts as

®𝑅F [𝑓 ] (�̂�) = 𝑓
(
®𝑅−1�̂�

)
. (8)

The coefficient matrix of the rotation ®𝑅F is obtained from Equa-
tion (4). It can be written with the Kronecker delta and a special
function 𝐷𝑙

𝑚𝑚′ , which is called a Wigner D-function as〈
𝑌𝑙𝑚, ®𝑅F [𝑌𝑙 ′𝑚′ ]

〉
F
= 𝛿𝑙𝑙 ′𝐷

𝑙
𝑚𝑚′

(
®𝑅
)
. (9)

The rotation invariance of SH is stated as the block diagonal
constraint of the coefficient matrices of rotations due to the term
𝛿𝑙𝑙 ′ in Equation (9), which is also visualized in Figure 10(a). This
property also implies that we can commute the SH projection of
a function and a rotation without loss of information. We refer to
Supplemental Figures 3(a), 4, and 5 in Supplemental Section 2.3 for
further description and visualization.

4.1.3 Spherical convolution. Spherical convolution is defined for a
kernel 𝑘 : [0, 𝜋] → C, a spherical function with azimuthal symme-
try 𝑘 (𝜃, 𝜙) = 𝑘 (𝜃 ), and any spherical function 𝑓 as follows.

𝑘 ∗ 𝑓 (�̂�) =
∫
Ŝ2
𝑘

(
cos−1

(
�̂� · �̂� ′) ) 𝑓 (�̂� ′) d�̂� ′ . (10)

The definition of spherical convolution in Equation (10) is deter-
mined from its important properties, linearity, and rotation equiv-
ariance for 𝑓 . Conversely, it is known that a rotation equivariant
linear operator on spherical functions is equivalent to a convolution
with some kernel 𝑘 .

SH provide an efficient computation of this convolution. The
SH coefficients of the convolution result, f ′

𝑙𝑚
B ⟨𝑌𝑙𝑚, 𝑘 ∗ 𝑓 ⟩F is

evaluated by

f ′
𝑙𝑚

=

√︂
4𝜋

2𝑙 + 1
k𝑙0f𝑙𝑚, (11)

which is just an element-wise product of the kernel and the input
function in SH coefficients. Note that it is analogous to the convolu-
tion theorem of the Fourier transform in Euclidean domains.
In a rendering context, a BRDF is encoded to a coefficient ma-

trix with𝑂
(
𝑙4max

)
space complexity. However, assuming Phong-like
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BRDFs with rotation equivariance whose reflected lobe just rotates
as the incident ray rotates, a BRDF can be represented as a spheri-
cal convolution kernel [Sloan et al. 2002], which can lead to more
efficient computation from its 𝑂 (𝑙max) sparsity.

4.1.4 Real and complex SH. While SH defined in Equation (1) are
complex-valued functions, real-SH 𝑌𝑅

𝑙𝑚
are also defined as follows:

𝑌𝑅
𝑙𝑚

=


√
2ℜ𝑌𝑙𝑚 = 1√

2

(
𝑌𝑙𝑚 + (−1)𝑚 𝑌𝑙,−𝑚

)
𝑚 > 0

𝑌𝑙𝑚 𝑚 = 0√
2ℑ𝑌𝑙 |𝑚 | =

𝑖√
2

(
(−1)𝑚 𝑌𝑙𝑚 − 𝑌𝑙,−𝑚

)
𝑚 < 0

. (12)

We will sometimes call 𝑌𝑙𝑚 defined in Equation (1) complex SH
to distinguish from real ones. Note that the real SH also satisfy
orthonormality and rotation invariance, but they always convert
real-valued functions into real-valued coefficients.

For the rotation transform of real SH coefficients, it can be written
similarly to complex SH as〈

𝑌𝑅
𝑙𝑚
, ®𝑅F

[
𝑌𝑅
𝑙 ′𝑚′

]〉
F
= 𝛿𝑙𝑙 ′𝐷

𝑙,𝑅
𝑚𝑚′

(
®𝑅
)
, (13)

where 𝐷𝑙,𝑅
𝑚𝑚′ is named real Wigner D-functions, and it can be eval-

uated simply as a linear combination of complex-valued 𝐷𝑙
±𝑚,±𝑚′

(Supplemental Equation (60)). See Supplemental Section 2.4 for more
details.
For computational efficiency, most existing computer graphics

works use real SH. However, both real and complex SH should
be considered for our polarized SH, which will be introduced in
Section 6.

4.2 Polarization and Mueller Calculus
Given a local frame ®F = [𝑥,𝑦, 𝑧], the intensity of a polarized ray
along the propagation direction 𝑧 is characterized by the four Stokes
parameters s = [𝑠0, 𝑠1, 𝑠2, 𝑠3]𝑇 . Here, each component 𝑠0 to 𝑠3 in-
dicates total intensity, linear polarization in horizontal/vertical di-
rection, linear polarization in diagonal/anti-diagonal direction, and
circular polarization, respectively. We refer novice readers to Sup-
plemental Section 3.1 for more introduction.
When taking another local frame ®F′ = ®𝑅𝑧 (𝜗) ®F, obtained by

rotating ®F by 𝜗 along its 𝑧 axis, the Stokes parameters with respect
to the new frame ®F′ is evaluated as

s′ = C®F→®F′s =


1 0 0 0
0 cos 2𝜗 sin 2𝜗 0
0 − sin 2𝜗 cos 2𝜗 0
0 0 0 1

 s. (14)

We can observe here that 𝑠0 and 𝑠3 behave as scalars, which are
measured independent of local frames. On the other hand, 𝑠1 and
𝑠2 are neither scalars nor coordinates of an ordinary vector, which
must have 𝜗 rather than 2𝜗 in Equation (14). This twice rotation
property of 𝑠1 and 𝑠2 under coordinate conversion will be dealt as
spin-2 functions in Section 5.

4.2.1 Stokes vectors in numeric vs. geometric quantities. As dis-
cussed before, dealing with polarized radiance needs careful at-
tention for whether focusing on a ray itself as a physical object or

Stokes components

[ ]s =
F

s 


[ ]ss ′ ′= =
F

s 


S

(a) Coordinate conversion (b) Stokes vector rotation

Frame

\mathbf{s}=\left[ \overset
\right]^{\vec{\mathbf{F}}}

Fig. 2. Intensity of a polarized ray visualized in the left is characterized by
a Stokes vector↔𝑠 . While↔

𝑠 is defined without any measurement frame, it
can be measured into a Stokes component vector s under such a frame.

(a) Inner product (b) Multiply by a complex

Fig. 3. Additional basic operations on Stokes vectors are defined in (a)
Equation (18) and (b) Equation (20).

Stokes parameter values 𝑠0, · · · , 𝑠3, only defined relative to a mea-
surement frame associated with the ray. Note that we distinguish
numeric and geometric quantities in this paper. Due to the twice
rotation property described in Equation (14), the polarized intensity
of a ray should be considered as a novel type of geometric quantity,
named Stokes vector and denoted by↔

𝑠 . Note that s and s′ in Equa-
tion (14) are numeric quantities and not geometric ones themselves
since they depend on observing local frames. Combining data of s
and ®F yields the geometric quantity↔

𝑠 , but it is not a matrix-vector
product as ordinary vectors. Thus, we write it in a novel notation as

↔
𝑠 = [s]®F =

[
s′
]
®F′ . (15)

In addition, we call such numeric vector s, the Stokes parameters
observed under a certain frame, as Stokes component vector2. We
also define the notation that evaluates the Stokes component vector
of a given Stokes vector and the frame as

s =
[↔
𝑠
] ®F
. (16)

Figure 2 visualizes it where the two-sided arrow in the left indicates
the actual oscillation direction of a polarized ray characterized by a
Stokes vector and the right plot shows the Stokes component vector
under a local frame.
We also denote S�̂� =

{
[s]®F | ®F ∈ ®F3, ®F [:, 3] = �̂�

}
as the Stokes

space, the set of all Stokes vector of rays along direction �̂� , where
®F [:, 1], ®F [:, 2], and ®F [:, 3] indicate the local 𝑥 , 𝑦, and 𝑧 axes of given
frame ®F, respectively.

Stokes vector operations. Binary operations on two Stokes vectors
↔
𝑠 = [s]®F1 and

↔
𝑡 = [t]®F2 are defined only if they belong to the identical

Stokes space. i.e., the ray directions are same (®F1 [:, 3] = ®F2 [:, 3]). If
so, the addition and the inner product are defined by converting the
Stokes vectors to the same frame as
2Note that we try to distinguish terminologies Stokes vectors and Stokes components as
geometric and numeric quantities, respectively, so this distinction is not common in
other literature. See also Supplemental Figure 1.
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Stokes components

[ ]s =
F

s 


[ ]ss ′ ′= =
F

s 


S

(a) Coordinate conversion (b) Stokes vector rotation

Frame

\mathbf{s}=\left[ \overset
\right]^{\vec{\mathbf{F}}}

Fig. 4. (a) When we fix the Stokes vector↔𝑠 and rotate the frame by 𝜗 , the
(numeric) Stokes components of↔𝑠 rotate by −2𝜗 . (b) Rotating the (geometric)
Stokes vector itself by 𝜗 is equivalent to rotating its Stokes components by
2𝜗 with a fixed frame.

↔
𝑠 +↔

𝑡 B

[
s +

[
↔
𝑡

] ®F1 ]
®F1
, (17) ⟨↔𝑠,↔𝑡⟩S�̂�

B s ·
[
↔
𝑡

] ®F1
, (18)

respectively. We also define the rotation of the underlying polarized
ray of ↔

𝑠 itself. For a rotation ®𝑅 ∈ −→
𝑆𝑂 (3), to avoid confusion, we

denote ®𝑅S as Stokes vector version of ®𝑅. Then for any Stokes vector
↔
𝑠 ∈ S�̂� , ®𝑅S acts as

®𝑅S
↔
𝑠 =

[ [↔
𝑠
] ®F]

®𝑅®F
∈ S ®𝑅�̂� , (19)

where ®F [:, 3] = �̂� . Figure 4 visualizes the difference between a
coordinate conversion and a rotation around �̂� . Note that these are
frame-independently well-defined.

Spin-2 vs. full Stokes vectors. Suppose that we have a Stokes vector
↔
𝑠 = [s]®F with s = [𝑠0, 𝑠1, 𝑠2, 𝑠3]𝑇 . To handle the special behaviors
of linear polarization components 𝑠1 and 𝑠2, we sometimes need
to process only these two separately from the four components.
To do so, we define a spin-2 Stokes vector (in spin-2 Stokes space)
as

[
[𝑠1, 𝑠2]𝑇

]
®F
∈ S2

�̂�
in a similar way to Equation (15). Then the

original Stokes vector, also called a full Stokes vector to be clear and
written as↔

𝑠 = 𝑠0 ⊕
[
[𝑠1, 𝑠2]𝑇

]
®F
⊕ 𝑠3, where ⊕ symbol indicates the

direct sum in linear algebra, which also can be considered as vector
concatenation in numerical programming tools.
Now a spin-2 Stokes vector can also be written with a complex

component as
[
[𝑠1, 𝑠2]𝑇

]
®F
= [𝑠1 + 𝑖𝑠2]®F. With this representation,

multiplication by a complex number:

𝑧 [𝑠1 + 𝑖𝑠2]®F = [𝑧 (𝑠1 + 𝑖𝑠2)]®F , (20)

is well defined independent of choice of the frame ®F, which indicates
scaling by |𝑧 | followed by rotating arg 𝑧/2 around its ray direction,
as illustrated in Figure 3(b). Note that while other operations such
as addition (Equation (17)) and inner product (Equation (18)) are
defined both for spin-2 and full Stokes vectors, the complex multiple
is only defined for spin-2 Stokes vectors.

4.2.2 Mueller transform in numeric vs. geometric quantities. Linear
maps from Stokes vectors along �̂�𝑖 to Stokes vectors along �̂�𝑜 , such
as polarimetric BRDF and other polarized light interactions, are
called Mueller transforms. The set of these Mueller transforms is
called a Mueller space and written as

M�̂�𝑖→�̂�𝑜
B

{ ↔
𝑀 : S�̂�𝑖

→ S�̂�𝑜
|

↔
𝑀

(
𝑎
↔
𝑠 + 𝑏↔𝑡

)
= 𝑎

↔
𝑀

↔
𝑠 + 𝑏

↔
𝑀

↔
𝑡

for any 𝑎, 𝑏 ∈ R and↔
𝑠,

↔
𝑡 ∈ S�̂�𝑖

}
. (21)

Similar to Stokes vector, a Mueller transform
↔
𝑀 ∈ M�̂�𝑖→�̂�𝑜

is a
geometric quantity, and it can be measured into a numeric matrix
M ∈ R4×4, named Mueller matrix3 with respect to observing local
frames. Here, we need two frames ®F𝑖 and ®F𝑜 with ®F𝑖 [:, 3] = �̂�𝑖 and
®F𝑜 [:, 3] = �̂�𝑜 and relations between

↔
𝑀 and M is notated as follows:

↔
𝑀 = [M]®F1→®F2 , M =

[ ↔
𝑀

] ®F1→®F2
, (22)

similar to Equations (15) and (16).

5 CHALLENGES OF STOKES VECTOR FIELDS IN
ANGULAR DOMAIN

Stokes vector radiance as a function on an angular domain, called a
Stokes vector field, is a fundamental quantity to describe polarized
transport. It has been the subject of previous work such as polarized
environment illumination, including the sky dome [Riviere et al.
2017; Wilkie et al. 2004, 2021] and polarized perspective images in
all the existing polarization renderers. However, the challenges of
dealing with Stokes vector fields have rarely been discussed. In this
section, we introduce such challenges in terms of different continuity
conditions from scalar fields in Section 5.1. It raises the necessity of
novel basis functions rather than scalar SH for frequency domain
methods of polarized light. In Section 5.2, we additionally define
basic operations on Stokes vector fields, which are required for
frequency domain analysis.

5.1 Continuity of Scalar vs. Stokes Vector Fields

A Stokes vector field on the unit sphere4 is formulated as
↔
𝑓 : Ŝ2 →

S�̂� . Here we can observe that, unlike scalar radiance, the value of
the Stokes vector field at each direction �̂� lies on the different Stokes
space, i.e.,

↔
𝑓 (�̂�) ∈ S�̂� , depending on the direction �̂� .

The simple way to measure a Stokes vector field is to assign
local frames for each direction �̂� . We call this type of function the
function from directions �̂� ∈ Ŝ2 to local frames ®F (�̂�) ∈ ®F3 with
®F (�̂�) [:, 3] = �̂� as a frame field.
Among the various choices of frame field, one choice is a 𝜃𝜙 frame

field ®F𝜃𝜙 , defined by aligning local 𝑥 and 𝑦 axes along longitudinal
and latitudinal directions as shown in Figure 5(b) and Supplemental
Equation (91).
Note that

↔
𝑓 can be visualized as double-sided arrows (following

Figure 2) on tangent planes of the sphere, as shown in Figure 5(a).
After choosing the frame field,

↔
𝑓 can be converted into four scalar

fields on the sphere based on the numeric–geometric conversion
notation we defined in Equation (15) as[↔

𝑓 (�̂�)
] ®F𝜃𝜙 (�̂� )

=
[
𝑓0 (𝜃, 𝜙) 𝑓1 (𝜃, 𝜙) 𝑓2 (𝜃, 𝜙) 𝑓3 (𝜃, 𝜙)

]𝑇
.

(23)

3Similar to Stokes vector and Stokes component vectors, we distinguish terminologies
Mueller transforms and Mueller matrices.
4Rigorously, it should be written as

{↔
𝑓 : Ŝ2 → ∪

�̂�∈Ŝ2S�̂� | ∀�̂� ∈ Ŝ2,
↔
𝑓 (�̂� ) ∈ S�̂�

}
,

but we write as the main text for the sake of simplicity and better intuition.
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(b) 𝜃𝜃𝜃𝜃-frame field(a) Stokes vector field

(d) Stokes component map
      w.r.t. 𝜃𝜃𝜃𝜃-frame field

(e) Stokes component map
     w.r.t. perspective frame field
(i) (ii)

(iii)

(i)

(ii)(iii)

(c) Perspective frame field

𝑠𝑠0

𝑠𝑠1

𝑠𝑠2

(iii)

(ii)

(i)

−0.2 +0.2 −0.2 +0.2−0.025 +0.025

Fig. 5. Visualizing a Stokes vector field (polarized environment map) de-
pends on the choice of frame fields. Taking Stokes components of Stokes
vector field (a) with respect to a typical 𝜃𝜙-frame field (b) yields equirectan-
gular images shown in (d). Using a perspective frame field used in Mitsuba 3
renderer, several perspective images are visualized as (e). Note that while
the 𝑠1 component (ii) in (e) at the sky, especially (iii), has consistent signs of
values, and the component in (d) under a different frame field has a different
trend of values.

We can visualize scalar fields of each component 𝑓𝑖 as equirectangu-
lar images by unwrapping the spherical domain into the rectangle
of spherical coordinates 𝜃 and 𝜙 as Figure 5(d).

However, there is an issue that any frame field always has a sin-
gularity, which means a local frame cannot be continuously defined
due to the Hairy Ball Theorem [Nash and Sen 1983]. For example,
®F𝜃𝜙 (�̂�) has two singularities5 at 𝑧𝑔 (𝜃 = 0) and −𝑧𝑔 (𝜃 = 𝜋 ). In
the rectangle domain, the top (and bottom, respectively) edge in-
dicates just a single point 𝑧𝑔 (−𝑧𝑔 , respectively) but has different
local frames that rotate one turn in counterclockwise (clockwise,
respectively) as 𝜙 increases. It yields different continuity conditions
for scalar and Stokes vector fields. While scalar fields (e.g., scalar
radiance, 𝑓0 or 𝑓3) have constant values at those top and bottom
edges, a two-dimensional numeric vector [𝑓1 (0, 𝜙) , 𝑓2 (0, 𝜙)] rotates
twice in clockwise as 𝜙 increases from 0 to 2𝜋 due to rotation of the
frame field ®F𝜃𝜙 (0, 𝜙), and similarly for 𝜃 = 𝜋 . These difference are
illustrated in Figure 6.

5We let axis symbols without subscripts such as 𝑥 and �̂� denote values of a frame
field, which are used to measure Stokes vectors along each direction, while those with
subscript 𝑔 such as 𝑧𝑔 denote a fixed global frame which is used to assign spherical
coordinates on a sphere.

(a) Scalar field (b) Stokes vector field

const.

const.

 
�𝑥𝑥𝑔𝑔 �𝑦𝑦𝑔𝑔

�̂�𝑧𝑔𝑔

polar-harmonics-code/figure/…png

Fig. 6. Analyzing continuity and smoothness for Stokes vector fields in
𝜃𝜙 domain. (a) The visualization of a Stokes vector field. As a geometric
quantity, Stokes vector fields are continuous and smooth on the entire
sphere, including the zenith. (b) To make the geometric Stokes vector fields
to numeric Stokes components, we can assign the specific frame field, named
𝜃𝜙-frame field.

Note that such pair of spherical functions with the continuity
condition of twice rotation such as 𝑠1 and 𝑠2 Stokes components
are called spin-2 functions, and scalar functions with the constant
continuity condition are called spin-0 functions.

To construct a frequency domain method similar to ones based on
scalar SH in scalar rendering, one may consider a naïve approach to
apply scalar SH combinedwith the 𝜃𝜙-frame field as a basis of Stokes
vector fields. However, this approach raises the singularity problem
due to the different continuity conditions between scalar and Stokes
vector fields. In Figure 7, the 𝑠1 and 𝑠2 components of the original
Stokes vector field are nearly flat around ±𝑧𝑔 (views (i) and (ii)), but
its projection onto the basis obtained by the naïve approach yields
(i) too high-frequency change at (b) or (ii) singularity at (b). This
is a fundamentally different feature from how the conventional SH
behaved on scalar fields, which always converts finite coefficients
to continuous functions and has a smoothing role. We also point
out that this singularity problem also implies a violation of rotation
invariance. We refer to Figure 11, which is described in Section 6.2.2,
and Supplemental Section 4 for more discussion.
In summary, the different continuity conditions are an essential

difference in the nature of Stokes vector fields. Although we only
show the case of the 𝜃𝜙 frame field here, Stokes vector fields always
have different properties in terms of continuity regardless of which
frame field is used.

5.2 Stokes Vector Fields Operations
To discuss bases for Stokes vector fields, we should define several
operations on Stokes vector fields. It can be done by generalizing
scalar field operations in Section 4.1, based on Stokes vectors opera-
tions in Section 4.2. The inner product of two Stokes vector fields

↔
𝑓

and ↔
𝑔 : Ŝ2 → S�̂� is defined as follows:〈↔

𝑓 ,
↔
𝑔

〉
F
B

∫
Ŝ2

〈↔
𝑓 (�̂�) , ↔𝑔 (�̂�)

〉
S
d�̂� . (24)
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∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
Scalar SH (+ 𝐅𝐅𝜃𝜃𝜃𝜃) coefficients

Reconst.
∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙
Spin-2 SH coefficients

Cut-off 

(a) Original polarized environment map
(i) 0.
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(b) Naïve approach: Scalar SH + 𝐅𝐅𝜃𝜃𝜃𝜃

(ii)

(c) Spin-2 SH

Reconst.Cut-off 

(i)

(ii)

𝑠𝑠2

(i)

(ii)

𝑠𝑠2𝑠𝑠1

(i)

(ii)

𝑠𝑠1
Fig. 7. We propose a frequency-domain analysis framework of Stokes vector
fields, which is represented by a polarized environment map here. Then, we
need spin-2 spherical harmonics rather than conventional ones to avoid the
singularity problem. See Figure 11 for rotation invariance of spin-2 SH, and
see Figure 10 and Equation (36) for how the coefficient matrix of rotation
under conventional SH (Wigner D-functions) can be utilized to spin-2 SH.

In addition, the rotation acting on Stokes vector fields by ®𝑅 ∈ −→
𝑆𝑂 (3)

is defined by
®𝑅F

[↔
𝑓

]
(�̂�) = ®𝑅S

(↔
𝑓

(
®𝑅−1�̂�

))
, (25)

for any
↔
𝑓 . We summarize inner products and rotations on different

types of quantities in Table 2.

6 POLARIZED SPHERICAL HARMONICS
To overcome the challenges described in Section 5 and bring benefits
of frequency-domain framework to polarized radiance functions,
we need a novel set of basis functions, polarized spherical harmonics.
In Section 6.1, we introduce spin-weighted SH and show how it
plays a role in the basis functions for polarized light transport in
computer graphics. Although spin-weighted SH are an existing
theory in physics [Goldberg et al. 1967; Newman and Penrose 1966],
it has never been used in rendering pipelines to describe full Stokes
vectors and Mueller transforms. In Section 6.2, we introduce our
polarized spherical harmonics, combining spin-0 (scalar) SH and
spin-2 SH, which can fully describe Stokes vector fields for polarized
frequency domain analysis.

Moreover, wewill also show how to perform rotation (Section 6.2),
linear operators (e.g., general pBRDFs and radiance transfer, Sec-
tion 6.3), and convolution (Section 6.4) in the PSH domain, which
are inevitable operations in frequency-domain analysis. These three
main operations are not only the theoretical foundation but also the
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𝑌𝑌𝑙𝑙𝑚𝑚 𝜃𝜃,𝜙𝜙 2𝑌𝑌𝑙𝑙𝑚𝑚 𝜃𝜃,𝜙𝜙

zero zero zero

zerozerozero

Fig. 8. Visualization of the first order (𝑙 = 2) of spin-2 spherical harmonics,
defined in Eqs. (26a) and (28), which are the basis functions of the space of
linear polarization as functions of directions (spin-2 Stokes vector fields).
(a) The first, third, and fourth rows show the closeup of the region indicated
in the second row. Note that spin-2 SH only have nonzero values at the
north pole for𝑚 = −2 and the south pole for𝑚 = 2, (�̂� = ±𝑧𝑔 , i.e., 𝜃 = 0
and 𝜋 ) respectively. In addition, tracing a line with fixed 𝜃 by increasing 𝜙 ,
as the blue curves in (a) and (b), can be seen as (c) a Stokes vector rotating
𝑚
2 times and (d) Stokes components 2𝑌𝑙𝑚 rotating𝑚 times.

main building blocks of our PSH rendering pipeline. See Section 7
for our real-time polarized rendering results based on our theory
described in overall Section 6.

6.1 Spin-Weighted Spherical Harmonics
The spin-weighted spherical harmonics 𝑠𝑌𝑙𝑚 are the basis for spin-
𝑠 functions on the sphere, and they have continuity conditions
depicted in Figure 6 by replacing the double rotation by 𝑠 times
rotation [Goldberg et al. 1967; Newman and Penrose 1966]. As a
brief introduction, SWSH can be derived from the basis for functions
on higher dimensional space, rotation transforms

−→
𝑆𝑂 (3), and intro-

ducing appropriate constraints that make these higher dimensional
functions equivalent to spin-𝑠 functions on the sphere.
For more motivation and derivation of SWSH, refer to Supple-

mental Section 5.1, and here we focus on the usage of SWSH.
To handle Stokes vectors, we focus on spin 𝑠 = 0 and 𝑠 = 2. With

𝑠 = 0, SWSH are exactly the same as conventional SH (0𝑌𝑙𝑚 =

𝑌𝑙𝑚), so SWSH can be considered as a generalization of SH. When
𝑠 = 2, spin-2 SH (2𝑌𝑙𝑚) become an orthonormal basis for spin-2
functions such as Stokes vector fields. While there are several types
of formulae to evaluate spin-2 SH, we introduce a way by utilizing
scalar (spin-0) SH as follows:
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Spin-2 SH (w.r.t. 𝜃𝜙-frame field)

2𝑌𝑙𝑚 (𝜃, 𝜙) =

√︄
(𝑙 − 2)!
(𝑙 + 2)!

[
𝛼𝑙𝑚 (𝜃 ) 𝑌𝑙𝑚 (𝜃, 𝜙) + 𝛽𝑙𝑚 (𝜃 ) 𝑌𝑙−1,𝑚 (𝜃, 𝜙)

]
,

(26a)

𝛼𝑙𝑚 (𝜃 ) = 2𝑚2 − 𝑙 (𝑙 + 1)
sin2 𝜃

− 2𝑚 (𝑙 − 1) cot𝜃
sin𝜃

+ 𝑙 (𝑙 − 1) cot2 𝜃,
(26b)

𝛽𝑙𝑚 (𝜃 ) = 2
√︂

2𝑙 + 1
2𝑙 − 1

(
𝑙2 −𝑚2) ( 𝑚

sin2 𝜃
+ cot𝜃
sin𝜃

)
. (26c)

Note that 2𝑌𝑙𝑚 here is complex-valued Stokes components of a basis
for spin-2 Stokes vector fields with respect to the 𝜃𝜙 frame field
®F𝜃𝜙 . Thus, 2𝑌𝑙𝑚 satisfies the following condition, which indicates
the double rotation at the north and south poles as visualized in
Figure 6(b) as follows:

2𝑌𝑙𝑚 (0, 𝜙) = 0, if𝑚 ≠ −2

2𝑌𝑙,−2 (0, 𝜙) = 𝑒−2𝑖𝜙 · const. ≠ 0,

2𝑌𝑙𝑚 (𝜋, 𝜙) = 0, if𝑚 ≠ 2

2𝑌𝑙,2 (𝜋, 𝜙) = 𝑒2𝑖𝜙 · const. ≠ 0.

(27)

Now, using the numeric–geometric conversion (Equation (15)), we
can define a (geometric) Stokes vector version of spin-2 SH as

↔
𝑌𝑙𝑚 (�̂�) B [2𝑌𝑙𝑚 (𝜃, 𝜙)]®F𝜃𝜙 (𝜃,𝜙 ) . (28)

The first order 𝑙 = 2 of spin-2 SH
↔
𝑌𝑙𝑚 are visualized in Figure 8.

Note that due to the nature of spin-2 functions, there are no orders
𝑙 = 0 and 𝑙 = 1.

Both terms 𝑌𝑙𝑚 (𝜃, 𝜙) and 𝑌𝑙−1,𝑚 (𝜃, 𝜙) in Equation (26a) have
𝑒𝑖𝑚𝜙 terms originated from Equation (1). From the 𝑒𝑖𝑚𝜙 term, we
can observe that, following the circle formulated by some fixed 𝜃 on
the sphere, the geometric Stokes vector (double-sided arrow) rotates
𝑚
2 times. In contrast, numeric Stokes components rotate𝑚 times,
as shown in Figure 8(b).
Additionally, when comparing spin-2 SH with scalar SH, spin-2

SH are similar in that they have azimuthal symmetry at 𝑚 = 0.
However, one difference is the condition of non-zero value at �̂� =

±𝑧𝑔; for spin-2 SH, it occurs at𝑚 = −2 or𝑚 = 2 (Figure 8), while
for scalar SH, it occurs at𝑚 = 0.

6.2 Polarized Spherical Harmonics
Now we combine Stokes components spin-0 functions 𝑠0 (total in-
tensity) and 𝑠3 (circular polarization) with spin-2 functions 𝑠1 and
𝑠2 (linear polarization). Then we define the orthonormal basis polar-
ized spherical harmonics, which span the full Stokes vectors fields
F

(
Ŝ2,S�̂�

)
over real coefficients. By using the additional index

𝑝 = 0, 1, 2, 3 that indicates the index of polarization components 𝑠0,
𝑠1, 𝑠2, 𝑠3 respectively, the PSH

↔
𝑌𝑙𝑚𝑝 are defined by

\begin{equation*}
\left(
\begin{array}{ll}
\mathrm{f}_{221} \\ +\mathrm{f}_{222}i
\end{array}
\right)
\end{equation*}
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Fig. 9. Any full Stokes vector field
↔
𝑓 can be linearly decomposed using scalar

(spin-0) SH𝑌𝑅
𝑙𝑚

for 𝑠0 (intensity) and 𝑠3 (circular polarization) and spin-2 SH
↔
𝑌𝑙𝑚 (or

↔
𝑌𝑙𝑚1 and

↔
𝑌𝑙𝑚2, equivalently) for 𝑠1 and 𝑠2 (linear polarization) as

described in Equations (29) and (30). The coefficient vector, which consists of

such f𝑙𝑚𝑝 , becomes our frequency domain representation of given
↔
𝑓 . Note

that while 𝑠0 and 𝑠3 components in the original angular domain completely
correspond to coefficients with 𝑝 = 0 and 𝑝 = 3, respectively, 𝑠1 and 𝑠2
components do not exactly correspond to 𝑝 = 1 and 𝑝 = 2, respectively, due
to their values depend on the choice of frame fields.

Polarized spherical harmonics

↔
𝑌𝑙𝑚0 (�̂�) =


𝑌𝑅
𝑙𝑚

(�̂�)
0
0
0

 ®F𝜃𝜙(�̂� )

,
↔
𝑌𝑙𝑚1 (�̂�) =


0

ℜ [2𝑌𝑙𝑚 (�̂�)]
ℑ [2𝑌𝑙𝑚 (�̂�)]

0

 ®F𝜃𝜙(�̂� )

,

↔
𝑌𝑙𝑚2 (�̂�) =


0

−ℑ [2𝑌𝑙𝑚 (�̂�)]
ℜ [2𝑌𝑙𝑚 (�̂�)]

0

 ®F𝜃𝜙(�̂� )

,
↔
𝑌𝑙𝑚3 (�̂�) =


0
0
0

𝑌𝑅
𝑙𝑚

(�̂�)

 ®F𝜃𝜙(�̂� )

.

(29)

Here,ℜ[·] and ℑ[·] indicate real and imaginary part of some scalar
complex number 𝑧 where 𝑧 = ℜ [𝑧] + 𝑖ℑ [𝑧]. Using these bases, any
Stokes vector field

↔
𝑓 can be written as
↔
𝑓 (�̂�) =

∑︁
(𝑙,𝑚,𝑝 ) ∈𝐼𝑃𝑆𝐻

f𝑙𝑚𝑝

↔
𝑌𝑙𝑚𝑝 , (30)

where 𝐼𝑃𝑆𝐻 denotes the set of the indices 𝑙 ,𝑚, and 𝑝:

𝐼𝑃𝑆𝐻 =
{
(𝑙,𝑚, 𝑝) ∈ Z3 | 𝑙 ≥ 0, |𝑚 | ≤ 𝑙, 𝑝 = {0, 3}

}
∪
{
(𝑙,𝑚, 𝑝) ∈ Z3 | 𝑙 ≥ 2, |𝑚 | ≤ 𝑙, 𝑝 = {1, 2}

}
,

(31)

and the coefficient f𝑙𝑚𝑝 can be computed as

f𝑙𝑚𝑝 =

〈↔
𝑌𝑙𝑚𝑝 ,

↔
𝑓

〉
F
. (32)

By using PSH, the decomposition example is illustrated in Figure 9,
when

↔
𝑓 is a polarized environment map.

Real coefficient formulation. One important adaption from spin-2
SH to our PSH is the separation of the complex part to make the
coefficient a real number. Suppose we have a spin-2 Stokes vector

ACM Trans. Graph., Vol. 43, No. 4, Article 127. Publication date: July 2024.



Spin-Weighted Spherical Harmonics for Polarized Light Transport • 127:11

field
↔
𝑓 , which only considers the linear polarization part. Generally,

using spin-2 SH, we can write frequency domain representation
with complex number coefficient as

↔
𝑓 =

∑︁
𝑙,𝑚

(f𝑙𝑚1 + f𝑙𝑚2𝑖)︸           ︷︷           ︸
complex coeff.

↔
𝑌𝑙𝑚︸︷︷︸
basis

. (33)

In contrast, using PSH, we can write the real number coefficient
using the form as

↔
𝑓 =

∑︁
𝑙,𝑚

f𝑙𝑚1︸︷︷︸
real coeff.

↔
𝑌𝑙𝑚1︸︷︷︸
basis

+ f𝑙𝑚2︸︷︷︸
real coeff.

↔
𝑌𝑙𝑚2︸︷︷︸
basis

. (34)

Although it looks trivially identical, there are some reasons why
this real-valued adaptation is important. First, since the real-world
quantities (Stokes vectors and Mueller transforms) have a real value,
using real-valued representation allows us to easily manage the con-
sistency when computing such quantities in the frequency domain.
Second, the formulation in Equation (33) actually loses the informa-
tion for representing Mueller transforms, while Equation (34) does
not. This will be introduced in later Section 6.3. For spin-0 compo-
nents, we use real SH 𝑌𝑅

𝑙𝑚
rather than complex SH 𝑌𝑙𝑚 not only for

the consistency to the angular domain but also to take algebraic
closedness of induced coefficients matrices into account, which is
discussed in Supplemental Section 5.3.1. Hence, we choose the real-
valued formulation to build a solid theory for our PSH, except for
some intermediate representations for efficient derivations that do
not violate the reasons for choosing the real-valued formulation.

6.2.1 Rotation invariance of PSH. Since PSH are an orthonormal
basis, the PSH coefficient rotation can also be done with the coef-
ficient matrix similar to scalar SH (Equation (9)). For given Stokes
vector field

↔
𝑓 and rotation ®𝑅F , the rotated coefficient f ′

𝑙𝑚𝑝
can be

computed as

f ′
𝑙𝑜𝑚𝑜𝑝𝑜

=
∑︁

𝑙𝑖 ,𝑚𝑖 ,𝑝𝑖

〈↔
𝑌𝑙𝑜𝑚𝑜𝑝𝑜 ,

®𝑅F
[↔
𝑌𝑙𝑖𝑚𝑖𝑝𝑖

]〉
F︸                           ︷︷                           ︸

coefficient matrix

f𝑙𝑖𝑚𝑖𝑝𝑖 , (35)

where subscript𝑜 at the indices notes output (rotated) and subscript 𝑖
at the indices notes input. By using the definitions, the coefficient
matrix at 𝑝𝑜 -th row and 𝑝𝑖 -th column can be calculated as

Coefficient matrix of the rotation in PSH[〈↔
𝑌𝑙𝑜𝑚𝑜𝑝𝑜 ,

®𝑅F
[↔
𝑌𝑙𝑖𝑚𝑖𝑝𝑖

]〉]
𝑝𝑜 ,𝑝𝑖

=

𝛿𝑙𝑖 𝑙𝑜



𝐷
𝑙,𝑅
𝑚𝑜𝑚𝑖

(
®𝑅
)

𝑝𝑜=0, 𝑝𝑖=0

01×2 0

02×1 R2×2
(
𝐷
𝑙,𝐶
𝑚𝑜𝑚𝑖

(
®𝑅
))

𝑝𝑜={1,2}, 𝑝𝑖={1,2}

02×1

0 01×2 𝐷
𝑙,𝑅
𝑚𝑜𝑚𝑖

(
®𝑅
)

𝑝𝑜=3, 𝑝𝑖=3



.

(36)

Note that 𝐷𝑙,𝐶
𝑚𝑜𝑚𝑖

and 𝐷𝑙,𝑅
𝑚𝑜𝑚𝑖

are complex and real Wigner-D func-
tions defined in Equations (9) and (13) respectively, and R2×2 in-
dicates an operator that convert complex numbers to 2 × 2 real
matrices as

R2×2 (𝑥 + 𝑦𝑖) B
[
𝑥 −𝑦
𝑦 𝑥

]
. (37)

As a result, we can observe that the resulting coefficient matrix of
rotation on Stokes vector fields in Equation (36) only computes the
same order 𝑙 for f and f ′. This means the resulting matrix is block di-
agonal, and PSH satisfy the rotation invariance property. Moreover,
since Equation (36) consists of existingWigner D-functions, another
advantage is that we can utilize existing formulas and computation
methods from scalar SH rotation. For more details and derivations
of proving rotation invariance, refer to Supplemental Section 5.4.

6.2.2 Rotation invariance validation.

Numerical validation. So far, we have shown the theoretical guar-
antee of rotation invariance of PSH; here, we will show it numer-
ically. For the given rotation transform, we can compute the cor-
responding coefficient matrix that rotates some physical quantity
with respect to some basis function. Then, we can validate rota-
tion invariance by checking the block diagonal behavior of the
computed coefficient matrix. Figure 10 shows such false-color mag-
nitude visualization of the complex-numbered coefficient matrix,
with rotation transform ®𝑅 = ®𝑅�̂� (𝜃 ) with 𝜃𝑢 = ®F𝑔 [10, 0.1, 0.2]𝑇 . Fig-
ure 10(a) shows the coefficient matrix of rotating scalar radiance
projected on the scalar SH. It can be clearly shown that the coeffi-
cient matrix is block diagonal. Figures 10(b) and 10(c) shows the case
of rotating spin-2 part of Stokes vector projected on the scalar SH
and spin-2 SH, respectively. Note that here we use complex-valued
representation (Equation (33)) to compare with the scalar radiance
case in Figure 10(a). Also, we use the 𝜃𝜙-frame field for scalar SH
projection of Stokes vectors since we need to specify the frame field
as described in Equation (23). As shown in Figure 10(b), using scalar
SH on Stokes vectors never becomes block diagonal so that implies
no rotation invariance. In contrast, as shown in Figure 10(c), the
coefficient matrix of spin-2 SH on Stokes vector is block diagonal,
which implies the rotation invariance and even computed value are
the same as scalar radiance case in Figure 10(a).

Polarized environment map reconstruction. We also validate the
rotation invariance with the polarized environment map, as shown
in Figure 11. Similar to the numerical validation above, we only
show the spin-2 part of the Stokes vector. For the given polarized
environment map, we initially project it to the basis function such as
scalar SH (with 𝜃𝜙-frame field) or spin-2 SH, and cut-off the coeffi-
cient vector to take the finite coefficient vector. First, we reconstruct
that finite coefficient vector into an angular domain, which yields a
band-limited environment map. On the other hand, we rotate that
finite coefficient vector with the given rotation transform ®𝑅 and per-
form reconstruction with the rotated basis with the same rotation
transform ®𝑅. Since we rotate both coefficients and basis with the
same rotation transform, the reconstruction result should be the
same as the vanilla cut-off reconstruction case. As a result, the naïve
approach using scalar SH with 𝜃𝜙-frame field shows inconsistent
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Fig. 10. Comparison of coefficient matrices of a particular rotation with
respect to each basis. Each matrix indicates the coefficient matrix of the rota-
tion with respect to scalar SH (Equation (8), also visualized in Supplemental
Figure 4), scalar SH with 𝜃𝜙-frame field, and spin-2 SH (Equation (36)) for
(a), (b), and (c), respectively. Each row and column indicates enumerated
pairs of (𝑙,𝑚) indices. (a) In the case of scalar SH and scalar radiance, the
coefficient matrix (Wigner D-function) shows block-diagonal behavior, and
it yields the rotation invariance. (b) However, if we naïvely apply rotation
using scalar SH with 𝜃𝜙-frame field to Stokes vectors, the rotation invari-
ance does not hold anymore. (c) By changing the basis to spin-2 SH, the
rotation invariance holds on Stokes vectors. Note that spin-2 SH starts from
𝑙 = 2, so the first two block diagonals are empty in (c).

behavior (Figure 11(a)), while using spin-2 SH results between two
reconstructions is identical (Figure 11(b)).

6.3 Coefficient Matrices for pBRDF and Radiance Transfer
Beyond coefficient vector representation of polarized environment
map, our PSH also provide frequency domain representation for
polarized light interaction such as pBRDF or radiance transfer oper-
ator into coefficient matrices. Here we derive a general formulation
of PSH coefficient matrices that extends scalar quantities described
in Section 4.1, Equations (4) to (7). Recall that the coefficient ma-
trix generally represents linear operators on Stokes vector fields in
the angular domain. Hence, they can be characterized as a Mueller
transform field

↔
𝑃 , which is a function from given two directions �̂�𝑖

and �̂�𝑜 to a Mueller transform as
↔
𝑃 : Ŝ2 × Ŝ2 → M�̂�𝑖→�̂�𝑜

. (38)

Note that a Mueller transform field can be considered as a (cosine-
weighted) pBRDF, that can act on a Stokes vector field

↔
𝑓 as a linear

operator as
↔
𝑃F

[↔
𝑓

]
(�̂�𝑜 ) =

∫
S2

↔
𝑃 (�̂�𝑖 , �̂�𝑜 )

↔
𝑓 (�̂�𝑖 ) d�̂�𝑖 . (39)

As a result, by using the appropriate type of inner product described
in Equations (18) and (24), the PSH coefficients of the Mueller trans-
form can be directly extended from scalar SH coefficients (Equa-
tion (4)) as

P𝑙𝑜𝑚𝑜𝑝𝑜 ,𝑙𝑖𝑚𝑖𝑝𝑖 =

〈↔
𝑌𝑙𝑜𝑚𝑜𝑝𝑜 ,

↔
𝑃F

[↔
𝑌𝑙𝑖𝑚𝑖𝑝𝑖

]〉
F

=

∫
Ŝ2×Ŝ2

〈↔
𝑌𝑙𝑜𝑚𝑜𝑝𝑜 (�̂�𝑜 ) ,

↔
𝑃 (�̂�𝑖 , �̂�𝑜 )

↔
𝑌𝑙𝑖𝑚𝑖𝑝𝑖 (�̂�𝑖 )

〉
S
d�̂�𝑖d�̂�𝑜 .

(40)

Similar to scalar SH, regarding the indices (𝑙𝑜 ,𝑚𝑜 , 𝑝𝑜 ) as rows and
(𝑙𝑖 ,𝑚𝑖 , 𝑝𝑖 ) as columns, we can obtain the coefficient matrix of

↔
𝑃 . Now

suppose that we have a coefficient vector f𝑙𝑖𝑚𝑖𝑝𝑖 from a polarized in-
cident radiance

↔
𝑓 , obtained by Equation (30) and a coefficient matrix

P𝑙𝑜𝑚𝑜𝑝𝑜 ,𝑙𝑖𝑚𝑖𝑝𝑖 from a pBRDF
↔
𝑃 . Then, similar to the conventional

scalar SH-based rendering pipeline (Equation (5)), the coefficient
vector of reflected radiance

〈↔
𝑌𝑙𝑜𝑚𝑜𝑝𝑜 ,

↔
𝑃F

[↔
𝑓

]〉
is evaluated by a

matrix-vector product as〈↔
𝑌𝑙𝑜𝑚𝑜𝑝𝑜 ,

↔
𝑃F

[↔
𝑓

]〉
=

∑︁
(𝑙𝑖 ,𝑚𝑖 ,𝑝𝑖 ) ∈𝐼𝑃𝑆𝐻

P𝑙𝑜𝑚𝑜𝑝𝑜 ,𝑙𝑖𝑚𝑖𝑝𝑖 f𝑙𝑖𝑚𝑖𝑝𝑖 . (41)

6.3.1 Submatrices of Mueller transforms and coefficient matrices.
Due to the nature of Mueller transform, there are additional indices
𝑝𝑜 and 𝑝𝑖 in Equation (40). Consequently, we have 16(= 4 × 4)
times more coefficients than the coefficient matrices in scalar SH.
For further analysis and efficient computation in a constant factor,
we can split a Mueller transform and the corresponding coefficient
matrix. From the given Mueller transform

↔
𝑃 in the angular domain

and a single pair of directions (�̂�𝑖 , �̂�𝑜 ), we can denote a single
Mueller transform

↔
𝑀 =

↔
𝑃 (�̂�𝑖 , �̂�𝑜 ). By using the numeric–geometric

conversion, the numeric Mueller matrix M can be computed as

M =

[ ↔
𝑀

] ®F𝑖→®F𝑜
. Now recall that 𝑠1, 𝑠2 components are dependent to

frame (spin-2), and 𝑠0, 𝑠3 are independent to frame (spin-0). In this
context, the Mueller matrix can be split into 9 submatrices according
to dependency on the ®F𝑖 and ®F𝑜 as

M =



M00 M01 M02 M03

M10
M20

M11 M12
M21 M22

M13
M23

M30 M31 M32 M33


. (42)

By following its spin-weights, we call the submatrices spin 0-to-0 ,
spin 2-to-0 , spin 0-to-2 , and spin 2-to-2 blocks. This decomposition
is also valid to evaluate the coefficient matrix of

↔
𝑃 . By fixing indices

𝑙𝑜 ,𝑚𝑜 , 𝑙𝑖 , and𝑚𝑖 for the coefficients defined in Equation (40), we
can split the coefficient matrix in the same way as

P𝑙𝑜𝑚𝑜0,𝑙𝑖𝑚𝑖0 P𝑙𝑜𝑚𝑜0,𝑙𝑖𝑚𝑖1 P𝑙𝑜𝑚𝑜0,𝑙𝑖𝑚𝑖0 P𝑙𝑜𝑚𝑜0,𝑙𝑖𝑚𝑖3

P𝑙𝑜𝑚𝑜1,𝑙𝑖𝑚𝑖0
P𝑙𝑜𝑚𝑜2,𝑙𝑖𝑚𝑖0

P𝑙𝑜𝑚𝑜1,𝑙𝑖𝑚𝑖1 P𝑙𝑜𝑚𝑜1,𝑙𝑖𝑚𝑖2
P𝑙𝑜𝑚𝑜2,𝑙𝑖𝑚𝑖1 P𝑙𝑜𝑚𝑜2,𝑙𝑖𝑚𝑖2

P𝑙𝑜𝑚𝑜1,𝑙𝑖𝑚𝑖3
P𝑙𝑜𝑚𝑜2,𝑙𝑖𝑚𝑖3

P𝑙𝑜𝑚𝑜3,𝑙𝑖𝑚𝑖0 P𝑙𝑜𝑚𝑜3,𝑙𝑖𝑚𝑖1 P𝑙𝑜𝑚𝑜3,𝑙𝑖𝑚𝑖2 P𝑙𝑜𝑚𝑜3,𝑙𝑖𝑚𝑖3


.

(43)
What we can observe here is each of the nine submatrices in the
Mueller matrix in the angular domain (Equation (42)) only affects the
corresponding submatrix in the coefficient matrix in the frequency
domain (Equation (43)). This fact allows us to compute the coefficient
matrix of each block separately, with less memory requirement for
simulating numerical integration for Equation (40). In other words,
the matrix product with sizes 1 × 4, 4 × 4, and 4 × 1 in the integrand
of Equation (40) can be reduced to 1×2, 2×2, and 2×1, respectively.

6.3.2 Complex pair separation of spin 2-to-2 Mueller transform. In
addition to separating the full Mueller transform into nine blocks,
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Fig. 11. Numerical validation of rotation invariance. First, get band-limited Stokes vector field (polarized environment map) (ii) from finite coefficients (i)
under each basis: (a) a naïve approach that combines scalar SH with the 𝜃𝜙-frame field and (b) spin-2 SH from Equations (26a) and (29). Then (iii) applying
rotation transform in the frequency domain, i.e., multiplying a coefficient matrix for a rotation (See Figure 10 for more details). Finally, the rotated coefficient
vectors are reconstructed, and the inverse rotation is applied in the final angular domain. Then, while (a) the naïve approach gives inconsistent results, (b) our
spin-2 SH give rotation-invariant results.

(a) Mueller transform and Mueller matrix

�⃡�𝑠 𝑀𝑀�⃡�𝑠

�⃗�𝐅𝑖𝑖
�⃗�𝐅𝑜𝑜

Mueller matrix 𝐌𝐌 = 𝑀𝑀
𝐅𝐅𝑖𝑖→𝐅𝐅𝑜𝑜

+
𝑀𝑀conj�⃡�𝑠 = �𝑚𝑚conj s1 − 𝑖𝑖s2 �⃗�𝐅𝑜𝑜

𝑀𝑀iso�⃡�𝑠 = �𝑚𝑚iso s1 + 𝑖𝑖s2 �⃗�𝐅𝑜𝑜

(b) Complex pair separation for Spin 2-to-2 Mueller matrix

M11 M12
M21 M22

𝑀𝑀 =

 M00 M01 M02 M03 
M10 M11 M12 M13 
M20 M21 M22 M23 
M30 M31 M32 M33 �⃗�𝐅𝑖𝑖→�⃗�𝐅𝑜𝑜

�𝑚𝑚iso,
isomorphic part

�𝑚𝑚conj,
conjugation part

Mueller transform 𝑀𝑀

Fig. 12. (a) When polarized light is reflected, the output Stokes vector
↔
𝑀

↔
𝑠 changes its magnitude and direction, and even direction change is not

constant for the general Mueller transform. (b) The spin 2-to-2 block of
a Mueller transform from �̂�𝑖 to �̂�𝑜 can be represented into two complex
numbers: the isomorphic part, denoted by Miso, and the conjugation part,
denoted byMconj. The isomorphic part indicates a Mueller transform, which
preserves the self-rotation of the input Stokes vector ↔

𝑠 . In contrast, the
conjugation part indicates one which rotates the output

↔
𝑀conj

↔
𝑠 CW around

�̂�𝑜 as↔
𝑠 rotates CCW around �̂�𝑖 .

we find that spin 2-to-2 part
↔
𝑀 can once more separated into two

frame-independent parts
↔
𝑀iso and

↔
𝑀conj. However, such separation

is not as simple as the full Mueller transform, which splits the
matrix into submatrices. For example, taking onlyM11 and replacing

M12,M21, andM22 to zero results in different Mueller transforms
depending on the choice of frames.
While we find such a separation between theoretical and com-

putational convenience, we also introduce a way to understand it
intuitively. Suppose that there is a spin 2-to-2 Mueller transform
↔
𝑀 ∈ M�̂�𝑖→�̂�𝑜

, that transforms a spin-2 Stokes vector↔
𝑠𝑖 to

↔
𝑠𝑜 . Imag-

ine the rotation of↔𝑠𝑖 around �̂�𝑖 , as depicted in Figure 12. As shown
in Figure 12(a), both magnitude and direction are changed in the
output↔𝑠𝑜 . Decomposing it into

↔
𝑀iso and

↔
𝑀conj, the output Stokes

vectors
↔
𝑀iso

↔
𝑠𝑖 and

↔
𝑀conj

↔
𝑠𝑖 rotate around �̂�𝑜 in opposite directions

without changing their magnitude as shown in Figure 12(b).
To obtain such two parts of the Mueller transform, we define the

following conversion functions that convert 2 × 2 real matrices to
complex numbers as

Ciso (M) B M11 +M22
2

+ M21 −M12
2

𝑖,

Cconj (M) B M11 −M22
2

+ M21 +M12
2

𝑖 .

(44)

The output pair of complex numbers from this conversion is denoted
by �̃�iso B Ciso (M) and �̃�conj B Cconj (M). Conversely, we can
reconstruct to the original 2 × 2 real matrix as

M = R2×2 (�̃�iso) + R2×2
(
�̃�conj

)
J, where J B

[
1 0
0 −1

]
. (45)

Then we can separate the Mueller transform as
↔
𝑀iso B

[
R2×2 (�̃�iso)

]
®F𝑖→®F𝑜 ,

↔
𝑀conj B

[
R2×2

(
�̃�conj

)
J
]
®F𝑖→®F𝑜 .

(46)
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The key property of this representation is that it converts the product
between the matrixM and the vector R2 (𝑧) or the matrix R2×2 (𝑧)
into complex products as

MR2 (𝑧) = R2
(
�̃�iso𝑧 + �̃�conj𝑧

∗) , (47a)

MR2×2 (𝑧) = R2×2 (�̃�iso𝑧) + R2×2
(
�̃�conj𝑧

∗) J, ∀𝑧 ∈ C (47b)

where R2 here denotes the nature conversion from a complex num-
ber to a 2-dimensional real vector:

R2 (𝑥 + 𝑦𝑖) =
[
𝑥

𝑦

]
. (48)

Now, we will show that these are well-defined frame-independent
quantities. If we rotate the frames ®F𝑖 and ®F𝑜 around their 𝑧 axes
by 𝛼 and 𝛽 , respectively, the new Mueller matrix under the rotated
frames can be evaluated as follows:

M′ =R2×2
(
𝑒−2𝑖𝛼

)
MR2×2

(
𝑒2𝑖𝛽

)
=
↑

Eq. (45)

R2×2
(
𝑒−2𝑖𝛼

) [
R2×2 (�̃�iso) + R2×2

(
�̃�conj

)
J
]
R2×2

(
𝑒2𝑖𝛽

)
=
↑

Eq. (47b)

R2×2
(
𝑒−2𝑖𝛼

) [
R2×2

(
�̃�iso𝑒

2𝑖𝛽
)
+ R2×2

(
�̃�conj𝑒

−2𝑖𝛽
)
J
]

=R2×2
(
�̃�iso𝑒

2𝑖 (−𝛼+𝛽 )
)
+ R2×2

(
�̃�conj𝑒

−2𝑖 (𝛼+𝛽 )
)
J.

(49)

We note here that it is identical to Equation (45) by replacing �̃�iso
with �̃�iso𝑒

2𝑖 (−𝛼+𝛽 ) and �̃�conj with �̃�conj𝑒
−2𝑖 (𝛼+𝛽 ) . Since �̃�iso and

�̃�conj do not affect each other, this separation is well-defined inde-
pendent of the choice of frames.
Finally, we obtain the following property:

MR2
(
𝑒𝑖𝜗 (s𝑖1 + 𝑖s𝑖2)

)
= R2

(
𝑒𝑖𝜗�̃�iso (s𝑖1 + 𝑖s𝑖2)

)
+ R2

(
𝑒−𝑖𝜗�̃�conj (s𝑖1 − 𝑖s𝑖2)

)
.

(50)

By using this property and Equation (46), it implies that
↔
𝑀iso pre-

serves the rotation direction of the input, and
↔
𝑀conj reverses the

rotation direction. We call this spin 2-to-2 Mueller matrix M (spin
2-to-2 Mueller transform

↔
𝑀 , respectively) to two complex numbers

�̃�iso and �̃�conj (
↔
𝑀iso and

↔
𝑀conj, respectively) conversion as complex

pair separation. And we call each resulting complex number as the
isomorphic part and conjugation part, respectively.

The important property of this separation is that the isomorphic
and conjugation parts of the spin 2-to-2 Mueller transform in the
angular domain only affect the corresponding spin 2-to-2 submatrix
of the coefficient matrix in the frequency domain. Consequently, we
can reduce direct 4 integrals in Equation (40) for 𝑝𝑜 , 𝑝1 = 1, 2 into
only 2 integrals as separating coefficient matrix as

[
P𝑙𝑜𝑚𝑜 1,𝑙𝑖𝑚𝑖 1 P𝑙𝑜𝑚𝑜 1,𝑙𝑖𝑚𝑖 2
P𝑙𝑜𝑚𝑜 2,𝑙𝑖𝑚𝑖 1 P𝑙𝑜𝑚𝑜 2,𝑙𝑖𝑚𝑖 2

]
=

R2×2
(

P̃𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖 ,iso

)
+ R2×2

(
P̃𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖 ,conj

)
J, (51a)

P̃𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖 ,iso B∫
Ŝ2×Ŝ2

𝑃iso (�̂�𝑖 , �̂�𝑜 ) 2𝑌 ∗
𝑙𝑜𝑚𝑜

(�̂�𝑜 ) 2𝑌𝑙𝑖𝑚𝑖
(�̂�𝑖 ) d�̂�𝑖d�̂�𝑜 , (51b)

P̃𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖 ,conj B∫
Ŝ2×Ŝ2

𝑃conj (�̂�𝑖 , �̂�𝑜 ) 2𝑌 ∗
𝑙𝑜𝑚𝑜

(�̂�𝑜 ) 2𝑌 ∗
𝑙𝑖𝑚𝑖

(�̂�𝑖 ) d�̂�𝑖d�̂�𝑜 , (51c)

where 𝑃iso and 𝑃conj denote isomorphic and conjugation parts of[↔
𝑃 (�̂�𝑖 , �̂�𝑜 )

] ®F𝜃𝜙 (�̂�𝑖 )→®F𝜃𝜙 (�̂�𝑜 )
, respectively. Note that both 2𝑌𝑙𝑜𝑚𝑜

is complex conjugated in Equations (51b) and Equation (51c), while
2𝑌𝑙𝑖𝑚𝑖

is complex conjugated only in Equation (51c). This differ-
ence comes from the property of the complex pair separation in
Equation (47a).

Based on these formulations, we can now explain the information
loss problem in Section 6.2, the reason for using the real coefficient
formulation (Equation (34)) rather than complex coefficient formu-
lation (Equation (33)). For fixed order 𝑙 and degree𝑚, Equation (33)
represents a spin-2 Stokes vector field into a single complex coeffi-
cient. This implies the spin 2-to-2 block of a Mueller transform field
is also represented as a single complex coefficient. Since a single
complex number is equivalent to the isomorphic part P̃𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖 ,iso
in Equations (51a) and (51b), it only has half the information.

Another further interesting property of the complex pair separa-
tion is that we can utilize the commutativity of the complex product,
while the original matrix product is non-commutative. It is the main
key to proving our polarized spherical convolution theorem, which
will be introduced in Section 6.4.

6.3.3 Isotropic pBRDF. Similar to the sparsity condition of isotropic
BRDF (Equation (7)), the PSH coefficients of isotropic pBRDF have
a sparsity condition. Such constraints can be easily obtained from
Equations (51b) and (51c) using 𝑒𝑖𝑚𝜙 term in Equation (26a). As a
result, the sparsity constraint of the PSH coefficients of isotropic
pBRDF can be written as

P𝑙𝑜𝑚𝑜𝑝𝑜 ,𝑙𝑖𝑚𝑖𝑝𝑖 = 0, if |𝑚𝑖 | ≠ |𝑚𝑜 | . (52)

Not only the above constraints but there are also additional linear
constraints for the spin 2-to-2 submatrix:

P̃𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖 ,iso = 0, if 𝑚𝑖 ≠𝑚𝑜 ,

P̃𝑙𝑜𝑚𝑜 ,𝑙𝑖𝑚𝑖 ,conj = 0, if 𝑚𝑖 ≠ −𝑚𝑜 .

(53)

By using those constraints from isotropy, the complexity of pBRDF
coefficient matrix 𝑂

(
4 × 4𝑙4max

)
reduces to 𝑂

(
4 × 4𝑙3max

)
, which is

also similar to the scalar SH coefficients of BRDF.
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(a) Visibility at a vertex (b) SH coefficients & Triple product matrix

𝑌𝑌00 →

Spin-2 triple product

𝑌𝑌𝑙𝑙𝑙𝑙 →

(scalar)
Spin-0 triple product

(scalar)
SH coeff. vector

Fig. 13. For precomputation of self-shadow in radiance transfer matrices,
(a) a visibility function 𝑉 (�̂� ) at a vertex can be converted into (b) SH
coefficients v𝑙𝑚 first and then these are expanded to the radiance transfer
matrix using the triple product equations. The spin 0-to-0 submatrix can
be obtained by the conventional triple product described in Equation (55),
and the spin 2-to-2 submatrix can be obtained by the triple product of
spin-0, spin-2, and spin-2 functions described in Equation (56).

6.3.4 Shadowed radiance transfer via triple products. For more re-
alistic rendering, the self-shadow at a vertex of an object can be
considered. To compute the self-shadowing radiance transfer coeffi-
cients V𝑙𝑜𝑚𝑜𝑝𝑜 ,𝑙𝑖𝑚𝑖𝑝𝑖 on the vertex, we first consider the binary visi-
bility mask𝑉 : Ŝ2 → R at the vertex. Then we consider such binary
visibility mask as a linear operator 𝑉F : F

(
Ŝ2,S�̂�

)
→ F

(
Ŝ2,S�̂�

)
,

which acts on a polarized illumination (Stokes vector field)
↔
𝑓 as

𝑉F
[↔
𝑓

]
(�̂�) B 𝑉 (�̂�)

↔
𝑓 (�̂�). Consequently, the coefficients can be

computed as

V𝑙𝑜𝑚𝑜𝑝𝑜 ,𝑙𝑖𝑚𝑖𝑝𝑖 =

∫
Ŝ2

〈↔
𝑌𝑙𝑜𝑚𝑜𝑝𝑜 (�̂�) ,𝑉 (�̂�)

↔
𝑌𝑙𝑖𝑚𝑖𝑝𝑖 (�̂�)

〉
S
d�̂� . (54)

Note that this equation can be also considered as Equation (40) with
a Dirac delta Mueller transform.
While Equation (54) can be evaluated in 𝑂

(
𝑛ray𝑙4max

)
times, it

has a useful relationship with the scalar SH coefficients v𝑙𝑚 of 𝑉 ,
which has 𝑂

(
𝑛ray𝑙2max

)
complexity. Here note that 𝑛ray indicates

the number of ray castings in numerical computation (i.e., number
of discrete samples for the integrals in Equations (3) and (54)). We
can compute the submatrices of V𝑙𝑜𝑚𝑜𝑝𝑜 ,𝑙𝑖𝑚𝑖𝑝𝑖 separately using the
identities of triple products of spin-weighted spherical harmonics
as depicted in Figure 13.
The spin 0-to-0 submatrix of V𝑙𝑜𝑚𝑜𝑝𝑜 ,𝑙𝑖𝑚𝑖𝑝𝑖 can be computed

using the triple product of three spin-0 (scalar) SH functions. In
other words, it can be computed by the scalar SH coefficient of the
point-wise product of two scalar SH bases as∫

Ŝ2
𝑌 ∗
𝑙𝑜𝑚𝑜

𝑌𝑙 ′𝑚′𝑌𝑙𝑖𝑚𝑖
d�̂�, (55)

which has a known analytic formula. Here, 𝑙 ′ and𝑚′ corresponds
to indices of v𝑙𝑚 . For the spin 2-to-2 part, it can be computed
using the triple product of one spin-0 and two spin-2 functions. In
other words, it can be computed by the spin-2 SH coefficient of the
point-wise product of the scalar SH basis and the spin-2 SH basis
functions as ∫

Ŝ2
2𝑌

∗
𝑙𝑜𝑚𝑜

𝑌𝑙 ′𝑚′ 2𝑌𝑙𝑖𝑚𝑖
d�̂� . (56)

Finally, the spin 2-to-0 , spin 0-to-2 parts are zero since the point-
wise product between spin-0 and spin-0 functions, and spin-0 and
spin-2 functions are spin-0 function and spin-2 function, respec-
tively.

Precomputing the shadowed radiance transfer using Equations (55)
and (56) rather than direct computation using Equation (54) requires
less computation as the number of ray castings for visibility test
increases. This is because expanding the coefficient vector v𝑙𝑚 to
the coefficient matrix V𝑙𝑜𝑚𝑜𝑝𝑜 ,𝑙𝑖𝑚𝑖𝑝𝑖 does not depend on the num-
ber of rays. Moreover, triple product relations in Equation (56) will
be used to extend our polarized PRT, which enables the dynamic
self-shadowing based on previous techniques [Xin et al. 2021; Zhou
et al. 2005].

Note that we do not describe the exact computation of the above
triple product integrals here, but we only point out that the spin-0
triple product described in Equation (55) has already been used in
existing SH-based methods, including Zhou et al. [2005]. The spin-0
and spin-2 triple product described in Equation (56) can be easily
implemented once the implementation of Equation (55) is given.
For detailed explanation and computation, refer to Supplemental
Section 5.7.

6.4 Polarized Spherical Convolution
A strength of the frequency domain analysis (e.g., Fourier transform,
spherical harmonics) is that it converts the convolution between
two functions into an element-wise product, allowing efficient com-
putation. However, even though spin-weighted SH themselves have
been already invented in physics, the spherical convolution on po-
larized light has not been defined, analyzed, or discussed. Hence, we
will start by defining a polarized spherical convolution operation in
Section 6.4.1. After that, we will show how to represent polarized
convolution kernels as coefficients in Section 6.4.2, by investigating
the subspace of PSH. Finally, we propose the polarized spherical
convolution theorem in Section 6.4.3, which is the frequency domain
analysis of polarized spherical convolution in PSH. Note that we
only introduce the theorem statement and its experimental valida-
tion in Section 6.4.3, but the derivation of such a theorem is a core
contribution of this paper. The detailed derivation and step-by-step
proof can be found in Supplemental Section 5.8.

6.4.1 Definition of spherical convolution on Stokes vector fields.
While scalar spherical convolution (Equation (10)) can be naturally
defined without considering its rotation equivariance, extending
such definition to Stokes vector fields are not trivial. When we try
to extend Equation (10) to Stokes vector fields, a question may be
asked: What will be the kernel 𝑘? Will it still be a scalar? Otherwise,
will it be a Stokes vector field or a Mueller transform field? Although
we can answer the question with heuristic choice, we will build a
general and standard definition here. To do so, we will start with
the linearity and rotation equivariance, which also defines scalar
spherical convolution as described in Supplemental Section 2.6.
Suppose there is a linear and rotation equivariant operator on

Stokes vector fields. Since it is a linear operator, it can be charac-
terized as a Mueller transform field

↔
𝐾 : Ŝ2 × Ŝ2 → M�̂�𝑖→�̂�𝑜

, as
discussed in Equations (38) and (39). In the beginning, we simply

ACM Trans. Graph., Vol. 43, No. 4, Article 127. Publication date: July 2024.



127:16 • Shinyoung Yi, Donggun Kim, Jiwoong Na, Xin Tong, and Min H. Kim

write the result of the convolution as∫
Ŝ2

↔
𝐾 (�̂�𝑖 , �̂�𝑜 )

↔
𝑓 (�̂�𝑖 ) d�̂�𝑖 , (57)

where
↔
𝑓 is the input Stokes vector field. On the other hand, the

rotation equivariance yields:

↔
𝐾

(
®𝑅�̂�𝑖 , ®𝑅�̂�𝑜 ,

)
= ®𝑅M

[↔
𝐾 (�̂�𝑖 , �̂�𝑜 )

]
∀®𝑅 ∈ −→

𝑆𝑂 (3) , (58)

where ®𝑅M [·] is the rotation on Mueller transforms. Here, ®𝑅M [·] is
defined as the composition of three Mueller transforms ®𝑅S ,

↔
𝐾 , and

®𝑅−1S via matrix multiplication as

®𝑅M
[↔
𝐾

]
B ®𝑅S

↔
𝐾 ®𝑅−1S , (59)

where ®𝑅S is defined in Equation (19).
Now we will define the corresponding kernel from the above

linear and rotation equivariant operator. Moving back to the scalar
spherical convolution, the kernel can be obtained by using Supple-
mental Equation (75). In particular, the scalar spherical convolution
kernel can be obtained from the output of the convolution opera-
tion when the input source 𝑓 (�̂�𝑖 ) is a Dirac delta at the north pole
𝛿
(
�̂�𝑖 , 𝑧𝑔

)
. Similarly, we can naturally extend this to the polarization

by using a Dirac delta Stokes vector
↔
𝑓 (�̂�𝑖 ) = ↔

𝑠𝑖𝛿
(
�̂�𝑖 , 𝑧𝑔

)
with any

Stokes vector↔
𝑠𝑖 ∈ S𝑧𝑔 . Substituting this Dirac delta Stokes vector

into Equation (57), we can get the resulting Stokes vector field as

↔
𝐾
(
𝑧𝑔, �̂�𝑜

)↔
𝑠𝑖 . (60)

Here we have two choices to define the kernel, the Stokes vector
fields in Equation (60) itself with a fixed↔

𝑠𝑖 or a Mueller transform
↔
𝐾
(
𝑧𝑔, �̂�𝑜

)
as a function of �̂�𝑜 . Among the choices, it is natural to

choose the latter one since the former choice cannot store all the
information of the spin 0-to-0 , 0-to-2 , 2-to-0 , and 2-to-2 parts
of

↔
𝐾 . Finally, we define the kernel using rotation equivariance in

Equation (58) to
↔
𝐾
(
𝑧𝑔, �̂�𝑜

)
, which reduces

↔
𝐾
(
𝑧𝑔, �̂�𝑜

)
into a Mueller

matrix as a function of single zenith angle 𝜃 . As a result, the kernel
is defined as

k (𝜃 ) B
[↔
𝐾

(
𝑧𝑔, �̂�sph (𝜃, 𝜙)

)] ®F𝜃𝜙 (0,𝜙 )→®F𝜃𝜙 (𝜃,𝜙 )
∈ R4×4, (61)

which is independent of the choice of 𝜙 . Note that when evaluating
the above equation to obtain the numeric Mueller matrix from
the Mueller transform

↔
𝐾 under the (𝜃, 𝜙), we have to consider the

alignment between incident and outgoing frames. In particular, we
have to rotate the incident frame by 𝜙 to get ®F𝜃𝜙 (0, 𝜙), so that the
incident and outgoing frames are always aligned along the great
circle of the constant 𝜙 , as illustrated in Figure 14(a).
Finally, by using the defined kernel above and reformulating

Equation (57), we can define the polarized spherical convolution,
which is the spherical convolution on Stokes vector fields as follows.

(a) 𝜃𝜙 frame field for 𝜙 (b) Convolution kernel of 𝜃

𝜙!𝐅"# 𝜃, 𝜙
!

(i)

𝜙$

𝐅 "
#
𝜃,
𝜙 $

�⃗�"# 0, 𝜙! �⃗�"# 0, 𝜙$

(ii)
(i) (ii)

Identical mueller matrix

𝐤 𝜃 =

k%% k%! k%$ k%&
k!% k!! k!$ k!&
k$% k$! k$$ k$&
k&% k&! k&$ k&&

Fig. 14. We propose the concept of spherical convolution of Stokes fields. A
convolution kernel is defined asMueller transform as a function of a single di-

rection
↔
𝑘 (�̂� ) ∈ M�̂�𝑔→�̂� . Due to rotation equivariance, its numeric Mueller

matrix under the 𝜃𝜙-frame field has azimuthal symmetry: k (𝜃 ) ∈ R4×4.
Concretely, the Mueller matrix under ®F𝜃𝜙 (0, 𝜙1 ) → ®F𝜃𝜙 (𝜃,𝜙1 ) , illustrated
as (a) (i), and the Mueller matrix under ®F𝜃𝜙 (0, 𝜙2 ) → ®F𝜃𝜙 (𝜃,𝜙2 ) , illus-
trated as (a) (ii) become an identical matrix, as illustrated in (b). Similar to
the general Mueller transform field described in Equation (42), the convolu-
tion kernel also can be separated in spin 0-to-0, 0-to-2, 2-to-0, and 2-to-2
submatrices (b).

Polarized spherical convolution

A spherical convolution kernel for Stokes vector fields is defined
as a function

↔
𝑘 : Ŝ2 → M𝑧𝑔→�̂� which maps a single direction

to a Mueller transform and has an azimuthal symmetry, i.e., its
numeric kernel k : [0, 𝜋] → R4×4 is defined independent of 𝜙
as:

k (𝜃 ) B
[↔
𝑘 (𝜃, 𝜙)

] ®F𝜃𝜙 (0,𝜙 )→®F𝜃𝜙 (𝜃,𝜙 )
. (62)

Then the convolution of the kernel
↔
𝑘 and a Stokes vector field↔

𝑓 : Ŝ2 → S�̂� is defined as:(↔
𝑘 ∗

↔
𝑓

)
(�̂�) =

∫
Ŝ2

(
®𝑅𝑧𝑔→�̂� ′

)
M

[↔
𝑘

(
®𝑅−1
𝑧𝑔→�̂� ′�̂�

)] ↔
𝑓
(
�̂� ′) d�̂� ′

=

∫
Ŝ2

[
k
(
cos−1 �̂� · �̂� ′

)]
®F𝑖→®F𝑜

↔
𝑓
(
�̂� ′) d�̂� ′ .

(63)

Here, ®𝑅𝑧𝑔→�̂� ′ is a rotation transform satisfying ®𝑅𝑧𝑔→�̂� ′𝑧𝑔 = �̂� ′,
and choices of ®𝑅𝑧𝑔→�̂� ′ does not affect on the definition of the
convolution. ®F𝑖 and ®F𝑜 are local frames at �̂� ′ and �̂� , respectively,
such that their 𝑥 axes are aligned along the common great circle
of �̂� ′ and �̂� .

6.4.2 Polarized SH coefficients for convolution kernels. Recall that
the scalar spherical convolution kernel 𝑘 : [0, 𝜋] → R, which is an
operand for convolution, can be converted to scalar SH coefficients.
Similarly, we will show how to convert the polarized spherical con-
volution kernel

↔
𝑘 to the PSH coefficients. While it requires rigorous

derivation steps, we only provide a comprehensive observation-
based description. Refer to Supplemental Section 5.8 for the full
derivation.

We start by considering the polarized spherical convolution ker-
nel

↔
𝑘 as a function. Then the domain of the

↔
𝑘 is simply [0, 𝜋] ∋ 𝜃 ,

and its PSH coefficient has a single 𝑙-index and no𝑚-index similar
to conventional kernels as Equation (11). On the other hand, the
codomain of the

↔
𝑘 is Mueller transforms, and its PSH coefficient has
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𝑇𝑇  =

𝑇𝑇  =
Spin-2 Stokes vector

Dirac delta
1 �⃗�𝐅𝑔𝑔

𝛿𝛿 �𝜔𝜔, �̂�𝑧𝑔𝑔

�̂�𝑧𝑔𝑔

(b) Spin 2-to-0 and 2-to-2 convolution kernels

⊕

Scalar
Dirac delta
𝛿𝛿 �𝜔𝜔, �̂�𝑧𝑔𝑔

�̂�𝑧𝑔𝑔

(a) Spin 0-to-0 and 0-to-2 convolution kernels

⊕

+isomorphic
part

conjugation
part

(c) Complex pair separation of spin 2-to-2 convolution kernel

=
Fig. 15. As conventional convolution kernel operates, (a) spin 0-to-0 and
0-to-2 convolution kernels for polarized spherical convolution can be char-
acterized as the output of a rotation equivariant linear operator on a Dirac
delta scalar field. Due to rotation equivariance, output Stokes vector fields
are azimuthally symmetric for spin-0 and spin-2 components, i.e., expand
with 𝑌𝑙0 and 2𝑌𝑙0 bases. On the other hand, (b) gives Stokes vector fields
with 𝑒±2𝑖𝜙 dependency, i.e., the spin 2-to-0 kernel expands with 𝑌𝐶

𝑙,−2 basis.
(c) The spin 2-to-2 kernel should even be split into two parts: an isomor-
phic part and a conjugation part using complex pair separation, which is
discussed in Equations (44) and (45).

both 𝑝𝑜 and 𝑝𝑖 similar to polarized coefficient matrices as described
in Section 6.3. Hence, we can write the convolution coefficients in
PSH as k𝑙𝑝𝑜𝑝𝑖 , and the remaining question is where these coeffi-
cients come from (i.e., from which basis function and which part of
the kernel on the angular domain).
We first have a look at the resulting Stokes vector field in Equa-

tion (60), which can be written as
↔
𝑘 (�̂�)↔𝑠𝑖 . Taking 𝜃𝜙-frame field,

we have:
k (𝜃 ) C (𝜙) s𝑖 , (64)

where C indicates the frame conversion matrix defined in Equa-

tion (14) and s𝑖 B
[↔
𝑠𝑖
] ®F𝑔 . Note that the frame conversion matrix

should be inserted to convert the Stokes component representa-
tion s𝑖 from ®F𝑔 to ®F𝜃𝜙 (0, 𝜙). Now, similar to the previous deriva-
tions, we will consider the spin-0 (𝑠0, 𝑠3) and the spin-2 (𝑠1, 𝑠2) parts
of the incident Stokes vector s𝑖 separately.
For the spin-0 Stokes components of s𝑖 , we can consider s𝑖 =

[1, 0, 0, 0]𝑇 or [0, 0, 0, 1]𝑇 . Then the conversion matrix C (𝜙) van-
ishes so that Equation (64) turns into an azimuthally symmetric
full Stokes vector field, which can be expanded by zonal harmonics
𝑌𝑙0 (scalar SH kernel coefficients), and a subset of spin-2 SH 2𝑌𝑙0.
Recall that the 𝜙 dependency of spin-2 SH 2𝑌𝑙𝑚 is characterized as
𝑒𝑖𝑚𝜙 in Equation (26a). Thus, similar to scalar SH, spin-2 SH 2𝑌𝑙0
with𝑚 = 0 also have azimuthal symmetry, shown in Figure 8. In
summary, Figure 15(a) illustrates the symmetry of the kernel Stokes
vector field.

For the spin-2 Stokes components of s𝑖 , we can consider s𝑖 =

[0, 1, 0, 0]𝑇 . Then the 𝑠0 component of Equation (64) turns into:[
k01 (𝜃 ) k02 (𝜃 )

]
R2

(
𝑒−2𝑖𝜙

)
. (65)

From the 𝜙 dependency which comes from C (𝜙), this scalar field
can be expanded by𝑌𝑅

𝑙,±2. However, through some derivation details,
we find that the best way to describe it is using𝑌𝐶

𝑙,−2. Note that the 𝑠3
component for Equation (64) is also expanded with the same bases.
Now considering the spin-2 (𝑠1, 𝑠2) component of Equation (64), it
turns into similarly as follows:[

k11 (𝜃 ) k12 (𝜃 )
k21 (𝜃 ) k22 (𝜃 )

]
R2

(
𝑒−2𝑖𝜙

)
. (66)

These Stokes vectors in Equations (65) and (66) are also illustrated
in Figure 15(b). In addition, we can apply the complex pair separa-
tion described in Equations (44) and (45). As a result, we can split
Equation (66) into two spin-2 Stokes vector fields:

R2
(
k̃iso (𝜃 ) 𝑒−2𝑖𝜙

)
+ R2

(
k̃conj (𝜃 ) 𝑒2𝑖𝜙

)
, (67)

which is also described in Figure 15(c). From the 𝜙 dependency here,
we observe that the isomorphic part expands using 2𝑌𝑙,−2 bases, and
the conjugation part does using 2𝑌𝑙2.
Eventually, the coefficients of the convolution kernel k (𝜃 ) with

respect to PSH are defined as follows.

Convolution coefficients in polarized spherical harmonics

k𝑙,{0,3},{0,3} B

∫
Ŝ2
𝑌 ∗
𝑙0 (�̂�) k{0,3},{0,3} (�̂�) d�̂� (68a)

k̃𝑙,{0,3},p B

∫
Ŝ2
𝑌
𝐶,∗
𝑙,−2 (�̂�) k̃{0,3},p (�̂�) d�̂� (68b)

k̃𝑙,p,{0,3} B

∫
Ŝ2

2𝑌
∗
𝑙0 (�̂�) k̃p,{0,3} (�̂�) d�̂� (68c)

k̃𝑙,iso B

∫
Ŝ2

2𝑌
∗
𝑙,−2 (�̂�) k̃iso (�̂�) d�̂� (68d)

k̃𝑙,conj B
∫
Ŝ2

2𝑌
∗
𝑙,2 (�̂�) k̃conj (�̂�) d�̂� (68e)

While k (𝜃 ) is defined on [0, 𝜋], Equation (68) considers each part of
k as a function defined on Ŝ2. Here, the 𝜙 dependency of each part
can be assumed to vanish the 𝜙 dependency of the entire integrand.
For instance, the 𝜙 dependency of k̃iso and k̃conj is considered as
𝑒−2𝑖𝜙 and 𝑒2𝑖𝜙 , respectively, as described in Equation (67).

On both hand sides in Equations (68b) and (68c), the subscript p
indicates the collection of the indices 1 and 2 in the Mueller matrix
k and the tilde symbol converts it into a single complex number. In
Equation (68c), we explicitly write the superscript 𝐶 to avoid confu-
sion with the real SH𝑌𝑅

𝑙𝑚
. Recall that we mentioned the convolution

coefficient can be written as k𝑙𝑝𝑜𝑝𝑖 . It can be constructed directly
from the above five types of complex coefficients by converting
them into R2 or R2×2. However, we found that the complex-valued
forms in Equations (68a) to (68e) are more convenient for evaluating
the convolution operation in the polarized SH domain.

6.4.3 Polarized spherical convolution in polarized spherical harmon-
ics. Using the convolution coefficients, we can now perform spher-
ical convolution on a Stokes vector field

↔
𝑓 : Ŝ2 → S�̂� with PSH

coefficients. Recall that scalar spherical convolution is evaluated as
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an element-wise product between the kernel coefficient and the coef-
ficient of the input, as described in Equation (11). Similarly, polarized
spherical convolution is evaluated by an element-wise product with
the coefficients f𝑙𝑚𝑝 of

↔
𝑓 and other coefficients obtained by flipping

the sign of the𝑚 index from f𝑙𝑚𝑝 as follows.

Polarized spherical convolution theorem

The PSH coefficients of the convolution of a kernel
↔
𝑘 and a

Stokes vector field
↔
𝑓 , denoted by f ′

𝑙𝑚𝑝
B

〈↔
𝑌𝑙𝑚𝑝 ,

↔
𝑘 ∗

↔
𝑓

〉
F
, is

evaluated as

f ′
𝑙𝑚,{0,3} =

√︂
4𝜋

2𝑙 + 1

[ ∑︁
𝑝𝑖=0,3

k̃𝑙,{0,3},𝑝𝑖 f𝑙𝑚𝑝𝑖

+
∑︁

𝑚′∈{±𝑚}
ℜ

(
𝑊

2→0,∗
𝑚𝑚′ k̃∗

𝑙,{0,3},p f̃𝑙𝑚′p

) ]
,

(69a)

f̃ ′
𝑙𝑚p =

√︂
4𝜋

2𝑙 + 1

[ ∑︁
𝑝𝑖=0,3

∑︁
𝑚′∈{±𝑚}

𝑊 0→2
𝑚𝑚′ k̃𝑙,p,𝑝𝑖 f𝑙𝑚′𝑝𝑖

+k̃𝑙,iso f̃𝑙𝑚p + (−1)𝑚 �̃�𝑙,conj f̃∗𝑙,−𝑚p

]
,

(69b)

where
f̃𝑙𝑚p B f𝑙𝑚1 + f𝑙𝑚2𝑖, (69c)

and𝑊 2→0
𝑚𝑚′ and𝑊 0→2

𝑚𝑚′ are simple constants taking values of 0,
± 1√

2
, or ± 𝑖√

2
following Supplemental Equations (162) and (156)

in Supplemental Section 5.9.

Note that the constant weights𝑊 2→0
𝑚𝑚′ and𝑊 0→2

𝑚𝑚′ become zero when
|𝑚 | ≠ |𝑚′ |, one when𝑚 =𝑚′ = 0, and are evaluated as Supplemen-
tal Equations (162) and (156) otherwise. This polarized spherical
convolution is nearly an element-wise product for the indices 𝑙
and𝑚, but similar to 4 × 4 matrix-vector product for the index 𝑝 .

Validation between the angular and frequency domains. We here
provide a numerical experiment that compares polarized spheri-
cal convolution in the angular and frequency domains, and also
Supplemental Section 5.9 provides a complete step-by-step deriva-
tion to validate our polarized spherical convolution theorem. For
the computation in the angular domain, we use an analytic kernel
k (𝜃 ) = diag (𝜋 − 𝜃 ) for convolution. First, we project the polarized
environment map onto the PSH coefficient vector and take the fi-
nite (band-limited) coefficient vector for a fair comparison with the
computation in the frequency domain. Then, we reconstruct the
polarized environment map to the angular domain and perform
convolutions on it. For the frequency domain, we first perform con-
volution on the frequency domain and then reconstruct the polarized
environment map. Figure 16(a) depicts the validation pipeline and
computation time. The convolution in PSH is significantly faster
than the angular domain operation. In addition, the two results are
identical, as shown in Figure 16(b).

Validation using rotation averaged pBRDF. Note that the scalar
sphere convolution theorem in Equation (11) can be expanded as a

∙ ∙ ∙ ∙ ∙ ∙

PSH coefficient vector PSH convolution
∙ ∙ ∙ ∙ ∙ ∙

polarized env. map
(initial)

polarized env. map
(convolution applied)

convolution in
angular domain

20.5s
0.0085s

213.6s

20.7s

(a) Polarized spherical convolution in angular vs. frequency domain

(b) Resulting images
Initial Angular domain conv. PSH conv.

𝑠𝑠1

𝑠𝑠2

Fig. 16. (a) We compare polarized spherical convolution performed in
angular and frequency (polarized SH) domains to validate our polarized
spherical convolution theorem in Equation (69). For fair validation, methods
on both domains start from the finite (band limited) coefficient vectors of
a polarized environment map, which are performed once reconstructing
into the angular domain and once the convolution operation is performed.
We test frequency levels 𝑙 < 100 and reconstruct pixel numbers = (𝑙 + 1)2.
We observe that convolution in the frequency domain is significantly faster
while two operations give identical results (b).

1

Average pBRDF over surface normals

=𝑇𝑇  

(a) Validation using rotation averaged pBRDF

(b) Resulting errors 

Spin 0-to-2 Spin 2-to-0 Spin 2-to-2
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Fig. 17. As scalar sphere convolution theorem in Equation (11) can be ex-
panded as a diagonal coefficient matrix, our polarized spherical convolution
theorem in Equations (69a) to (69c) can also be expanded to a coefficient
matrix with some linear constraints. Averaging a pBRDF for each normal
vector of the material as depicted in (a), we can enforce rotation equivari-
ance to the pBRDF. We validate our convolution theorem by measuring the
projection errors of the coefficient matrix of the rotation averaged pBRDF
to the linear constraints of convolution operators. (b) provides the error
virtually converges to zero as the grid resolution 𝑛, which indicates the
number of samples of normal vectors, increases. Note that we separate the
projection error into each of spin 0-to-2, 2-to-0, and 2-to-2 submatrices (each
of three plots), coefficients at |𝑚𝑖 | = |𝑚𝑜 | for each order 𝑙 (first five curves
in the legend), and coefficients at |𝑚𝑖 | ≠ |𝑚𝑜 | , for better analysis.

coefficient matrix with linear constraints since the entry-wise prod-
uct of two vectors is equivalent to the product of a diagonal matrix
and a vector. Similarly, our polarized spherical convolution theorem
from Equations (69a) to (69c) can also be expanded to a coefficient
matrix with some linear constraints, described in Supplemental
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Section 5.9. We can approximate a pBRDF coefficient matrix into
convolution coefficients by averaging each normal vector of the ma-
terial, as described in Figure 17(a), to ensure rotation equivariance.
Figure 17(b) shows the projection error of the rotation averaged
pBRDF to the linear constraints of convolution. We can observe that
RMS errors virtually converge to zero, which supports our polarized
spherical convolution theorem in the frequency domain.

7 PRECOMPUTED POLARIZED RADIANCE TRANSFER
This section presents a real-time rendering pipeline and results of
our precomputed polarized radiance transfer, which utilizes PSH
and operations in Section 6. How each theoretical component in
Section 6 contributes to our rendering pipeline is summarized in
Figure 18. Note that our main challenge is related to the linear
polarization components 𝑠1 and 𝑠2; we omit the circular polarization
component 𝑠3 in rendering results since it can be simply processed
like total intensity 𝑠0. We also refer to our supplemental video for
real-time rendering results.

Processing polarized environmentmap. Wegenerate a synthetic po-
larized environmentmap using the polarized variant and polarization-
aware materials in Mitsuba 3 [Jakob et al. 2022]. In the precomputa-
tion stage, we store the PSH coefficient vector of the environment
map up to orders (frequency bands) 𝑙 ≤ 𝑙high = 9 using Equation (32).
Then, in the runtime, these coefficients are rotated to each object
frame using Equations (35) and (36) (Section 6.2).

pBRDF projection to PSH coefficients. In the precomputation stage,
we also convert data-based isotropic pBRDFs from Baek et al. [2020]
into PSH coefficient matrices using Equation (40). When converting
and storing the pBRDF coefficient matrix, we utilize the sparsity
from the isotropy of pBRDF described in Equations (52) and (53).
For the cut-off order, we select 𝑙high = 9, same as the environment
map (Section 6.3).

Low–high frequency separation. If we increase the order 𝑙high, the
radiance transfer result will converge the the ground truth. How-
ever, the BRDF coefficient matrix requires the complexity of 𝑂

(
𝑙4
)
,

and simply increasing the order by utilizing a full radiance trans-
fer matrix might significantly reduce the computational efficiency.
Therefore, we divide the coefficients into low-frequency and high-
frequency parts. Then, we apply the O

(
𝑙4
)
radiance transfer matrix

only to the low-frequency part rather than utilizing full coefficients.
The remaining high-frequency part will be handled in a distinct
convolution pipeline. In our implementation, such separation is
done in 𝑙low = 4, so the low-frequency part contains 0 ≤ 𝑙 ≤ 4 and
5 ≤ 𝑙 ≤ 9 for the high-frequency part.

Radiance transfer using PSH coefficients. Now we rotate the low-
frequency part of projected pBRDF coefficients to each vertex nor-
mal, yielding the simple unshadowed version of polarized radiance
transfer operators. In the runtime, similar to the low–high-frequency
separation in pBRDF, the coefficient from the environment map can
also be separated by simply splitting the coefficient vector. After that,
radiance transfer can be done by a simple matrix-vector product
between the radiance transfer operator and the low-frequency part
of the environment map, as described in Equation (41) (Section 6.3).

Shadowed transfer using triple product. In the previous paragraph,
we propose the unshadowed version of the radiance transfer oper-
ator. However, the shadow can also be considered using the triple
product as described in Section 6.3.4. To do so, we evaluate visi-
bility for each vertex by casting 2,000 rays from the vertex in the
precomputation stage. Then we convert it into the SH coefficient
vector and convert it again to a coefficient matrix using SH and
PSH triple product in Equations (55) and (56). Finally, applying the
matrix product of the projected shadow map coefficient and the
unshadowed transfer matrix yields the shadowed transfer matrix
that can replace the unshadowed transfer matrix (Section 6.3.4).

Validation with shadowed transfer. We also provide a validation
experiment by comparing ours with a physically-based polarization
ray tracer, Mitsuba 3. Since our spherical convolution method in
the PPRT assumes additional symmetry for pBRDFs and it is al-
ready validated in different experiments in Figures 16 and 17, we
experiment our shadowed transfer without high-frequency convo-
lution approximation. Figure 19 compares RMSE values between
each Stokes component of the rendered images of Mitsuba 3 and our
method. We observe that the error for each component decreases
close to zero as the cut-off frequency 𝑙max increases. Note that the
errors will ideally converge to zero when the vertex resolution of
the scene additionally increases. We refer to Supplemental Figure 9
for rendered images and difference maps.

Efficient specular appearance using polarized spherical convolution.
Now, for the remaining high-frequency part, we project the matrix
into convolution coefficients by linear constraints of the convolu-
tion following the Sloan et al. [2002]. Note that following Sloan
et al. [2002], convolution approximation of a reflected BRDF, which
flips the reflected radiance with respect to the surface normal, is
preferable to the original BRDF. Thus, we project the product of a
reflection operator’s coefficient matrix, introduced in Supplemental
Section 5.6, and the radiance transfer matrix into a convolution
coefficient. This convolution approximation is based on the fact
that a specular lobe of a BRDF usually has the peak at the mirror
reflection direction so that we can approximate the flipped lobe
along the normal as a rotation equivariant one. Then, in runtime,
we evaluate PSH values at the reflected direction of the view vector
by normals rather than the view vector itself (Section 6.4).
To evaluate the impact of each rendering component, we con-

duct an ablation study as shown in Figure 20. All experiments are
done in the machine with an Intel i9-12900K CPU and an NVIDIA
GeForce RTX 4090 GPU. All scenes are rendered in 1024 × 1024 res-
olution. We refer to Supplemental Table 2 for detailed specification
the scene setups throughout the paper. The low-order results only
use low-frequency parts with unshadowed radiance transfer. The
+shadow results use the same order as low-order results, but the
shadow is considered. The +high-order results use our full pipeline,
including the convolution approximation of the high-frequency part.
The result shows real-time performance in 102-475 fps for polarized
rendering, considering polarized environment lighting. From our
shadowed light transport, we can see soft shadows due to envi-
ronment maps not only in unpolarized 𝑠0 images but also in linear
polarization 𝑠1 and 𝑠2 images. When convolution approximation of
pBRDF at high order is applied, specular behaviors are enhanced.
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Fig. 19. We validate our real-time polarized rendering with shadowed
radiance transfer compared withMitsuba 3 ray tracer. We report RMSE error,
which decreases close to zero as the cut-off frequency 𝑙max increases. We
refer to Supplemental Figure 9 for resulting rendered images and difference
maps.

We also conduct another ablation experiment for convolution
approximation, and the result is shown in Figure 21. We provide
intensity images through two directions of linear polarizer for better
intuition to see specular behavior. If we use only low-order radiance
transfer (Figure 21(b)), it is computationally efficient that achieves
480 fps, but it loses some high-frequency appearance. Increasing the
order to 0 ≤ 𝑙 ≤ 5makes the result close to the ground truth, but its
performance is degraded to 210 fps. Finally, applying convolution
approximation for 5 ≤ 𝑙 ≤ 9 and using full radiative transfer matrix
for 0 ≤ 𝑙 ≤ 4 in Figure 21(d) shows a much higher 308 fps but a rich
specular appearance than (c), which utilizes orders up to ≤ 5 for the
transfer matrix.

8 DISCUSSION

8.1 Choice of PRT Framework
There have been plenty of PRT methods and design choices for
the PRT pipeline. For instance, Sloan et al. [2005] store BRDF into
SH coefficient (frequency domain) along incident ray direction but

tabulates several outgoing ray directions (angular domain). Sloan
et al. [2002] precompute coefficient matrix of self-shadow by directly
simulating Equation (54) rather than converting coefficient vector
of visibility mask followed by applying SH triple product. However,
these choices are totally orthogonal to our main contribution. For a
better application of our method to polarization rendering, our PPRT
pipeline described in Figure 18 is designed to be aimed to maximize
usage of frequency domain operations (theoretical properties for
polarized SH). For instance, to build a PPRT method with pBRDF
tabulated for each outgoing radiance sample, any method can be
plugged in, but to represent pBRDF into a full coefficient matrix,
our method is required as described in Section 6.3.

8.2 Physical Constraints
Valid range of Stokes vectors. It is known that the physically valid

Stokes vectors should satisfy

𝑠0 ≥
√︃
𝑠21 + 𝑠

2
2 + 𝑠

2
3 . (70)

There can be many sources of invalidity, such as invalid values in
the pBRDF dataset we use [Baek et al. 2020], and the characteristic
of the frequency domain method itself. However, since frequency
domain analysis decomposes Stokes components into linear factors,
such nonlinear inequality is hard to represent in the frequency
domain so that the latter source invalidity cannot ideally vanish.
We regard Equation (70) as an extended constraint of positivity of
radiance in unpolarized radiance transport. Note that SH produce
negative values which are related to ringing artifacts [Ramamoorthi
and Hanrahan 2001b; Sloan et al. 2002], even if the original radiance
is positive in any direction. There have been a variety of works
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Fig. 20. Ablation study. We provide a real-time frequency-domain environment map lighting method with linear polarization. We use the PSH coefficient
vector of a polarized environment map computed in Section 6.2. The coefficient matrix (radiance transfer matrix) of Baek et al. [2020]’s data-based pBRDF
computed in Section 6.3, which yields unshadowed transfer shown in the first rows in (a) and (b). We also provide shadowed transfer using Supplemental
Section 5.7 and efficient pBRDF approximation for specular appearance using polarized spherical convolution in Section 6.4.
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Fig. 21. Although increasing the number of orders 𝑙 makes the result converge to the actual appearance (a), it suffers from quartic computational complexity
as (c) reports less than half fps than (b) even though it uses one more frequency band. Rather than using the full radiance transfer matrix for high orders, (c)
we can project the coefficient matrix into convolution coefficients to achieve efficient high order 𝑙 < 10 appearance, which provides much higher performance
than the full matrix of 𝑙 < 6 in (b).
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Fig. 22. We can project the rendered image to the physically valid range of Stokes vectors as discussed in Section 8.2, without loss of rendering time. (a) and
(b) show two views of the same scene, respectively.

to overcome negativity and ringing artifacts from conventional
SH [Berger 2011; Boyd 2001; McClarren et al. 2008; Sloan 2008,
2017]. Extending them for PSH will be an interesting future research
direction. For the simplest example, Figure 22 shows the result of
our PPRT followed by simply projecting Stokes components to the
physically valid range. By enforcing the inequality in Equation (70),
𝑠0 components become slightly brighter, and 𝑠1 and 𝑠2 components
do slightly darker, while DoP and AoLP are preserved. Except for
this figure, we report our rendering result without this valid range
projection to show the direct output of our method.

Constraints for pBRDF. We leave PSH formulation of physical con-
straints of pBRDF as future work while providing brief discussions.
pBRDF should also satisfy energy conservation, but we consider
reformulating it into the PSH domain will be a challenging problem
since SH and PSH are related to 𝐿2-norm, but energy conserva-
tion is related to 𝐿1-norm. To the best of our knowledge, energy
conservation of SH-projected BRDF is not guaranteed even in unpo-
larized light transport. Finding the PSH formulation of reciprocity
of pBRDF is an interesting problem. Note that flipping the order
of direction variables of a pBRDF makes it belong to a different

Mueller space, i.e.,
↔
𝑃 (�̂�𝑖 , �̂�𝑜 ) ∈ M�̂�𝑖→�̂�𝑜

≠ M�̂�𝑜→�̂�𝑖
∋

↔
𝑃 (�̂�𝑜 , �̂�𝑖 ),

so that investigating reciprocity of pBRDF requires a solid theo-
retical foundation. We observe that only a few works address this
obscure challenge [Ding et al. 2021; Sekera 1966].

8.3 Difference against the Traditional SWSH
The main difference of this work against traditional SWSH theory
consists of the SWSH coefficient formulation for linear operators
on Stokes vector fields, including pBRDF and polarized spherical
convolution, which is generally equivalent to rotation equivariant
linear operators both in the angular and frequency domains.

Before discussing the convolution in more detail, we distinguish
two senses to extend conventional convolution on Euclidean do-
mains to others. First, let us denote an operation between two quan-
tities as 𝑘 ∗ 𝑓 = 𝑔. One defines the operation ∗ as an extension of
convolution by assuming 𝑘 and 𝑓 as the same type of quantities,
which we call correlation. On the other hand, one can define the
operation ∗ to have the same kind of input 𝑓 and the output 𝑔,
which we call convolution here. In the spherical domain, the output
of such correlation between two Stokes vector fields should be a
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function of single angle [Ng and Liu 1999; Zaldarriaga and Seljak
1997] or a function of rotations, which is not compatible with our
PPRT pipeline. In the perspective of image processing and computer
graphics, We must extend the convolution rather than correlation for
Stokes vector fields. As discussed in Section 2.3, existing convolu-
tion theories for Stokes vector fields are limited to one [Ng and Liu
1999] (spin 0-to-0 and only real part of the isomorphic part of spin
2-to-2 ) or six [Garcia and Siewert 1986; Tapimo et al. 2018] degrees
of freedoms of kernels at each frequency band, which correspond to
subsets of our full kernel formulation described in Equation (62) and
Equations (68a) to (68e). To the best of our knowledge, we define
new spherical convolution on Stokes vector fields so that it is equiv-
alent to rotation equivariant linear operators. We also establish its
PSH formulation, which is applicable to pBRDF approximation.
Our main contributions come from two novel technical details

that may be hard to recognize at a high level. First, our real coefficient
formulation discussed in Section 6.2 and Supplemental Section 5.3.1
is a key part of constructing our PSH formulation of linear operators.
It includes our discussion about which sense of linearity of Stokes
vectors should be chosen to represent general Mueller matrices. The
second technical novelty is the complex pair separation, introduced in
Section 6.3. It is critical to derive our polarized convolution theorem
in Equation (69) through Supplemental Equations (166) to (178). We
refer to Supplemental Section 6.2 for more detailed discussion.

8.4 Future Work
Wang and Ramamoorthi [2018]’s analytic SH coefficient for polygo-
nal lights can be directly applied to the PPRTmethod for unpolarized
polygonal lights and polarized material. However, finding analytic
formulae for polarized polygonal lights is expected to be a further
challenging problem. Xin et al. [2021] found a fast triple product
method for conventional SH utilizing FFT.While this method cannot
be directly applicable to polarized SH, a similar method is expected
to be found using a similar idea.
Applying another PRT pipeline to our PSH theory will be an

interesting work. For instance, one can tabulate outgoing directions
of pBRDFs rather than using full coefficient matrices as Sloan et al.
[2005], or compute shadows in runtime following Zhou et al. [2005]
utilizing spin-2 SH triple product introduced in Equation (56). An-
other possible application is combining physically-based ray tracing
for polarized environment map lighting. We can use low-order PSH
coefficients for polarized environment maps as Monte Carlo control
variates.

In subsurface scattering, an analytic solution of the radiative trans-
fer equation (volume rendering equation) for participating media
utilizes the SH up to 𝑙 = 1 [Jensen et al. 2001]6, and even at higher or-
ders [Zhao et al. 2014]. Similarly, finding an analytic solution to the
polarized radiative transfer equation would be interesting for future
work. Without limiting forward rendering, our polarized SH can be
used to extend various SH-based methods to polarized states such as
acquiring pBRDF based on Ghosh et al. [2007] and Tunwattanapong
et al. [2013]’s methods for scalar BRDF, constructing novel polar-
ized spherical CNN, or enhancing polarized radiance field methods

6Scalar irradiance and vector irradiance in that paper corresponds to 𝑙 = 0 and 𝑙 = 1 SH
expansion.

based on existing SH-based methods [Sara Fridovich-Keil and Alex
Yu et al. 2022; Verbin et al. 2022] and polarized methods without
utilizing basis functions [Dave et al. 2022; Kim et al. 2023].
Extending non-harmonic bases such as wavelets and spherical

Gaussians to Stokes vector fields would be a completely different
approach from this work, but it will be an interesting future work.
Even though they are different types of basis functions, properties
of Stokes vector fields, including continuity, discussed in Section 5,
must be handled properly.

9 CONCLUSION
While spherical harmonics have been a powerful tool in conven-
tional unpolarized light transport, such basis functions that provide
frequency domain analysis for polarized light transport have been
absent. We have addressed Stokes vector fields’ challenges regarding
frame fields’ choices and their singularities. Also, we have presented
spin-weighted spherical harmonics, which provide a rotation invari-
ant orthonormal basis for Stokes vector fields. Combining conven-
tional spin-0 SH for 𝑠0 and 𝑠3 Stokes components and spin-2 SH for
𝑠1 and 𝑠2 components, we have provided our polarized spherical
harmonics theory, including linear operator formulation for pBRDF
and polarized spherical convolution. Also, we have presented the
precomputed polarized radiance transfer, which achieves the first
real-time polarized rendering, considering environment lighting
and shadows. We expect SWSH and our PSH theory to become
helpful in understanding the special nature of polarization and to
be used in various applications in future work.
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