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Fig. 1. We propose a compact, diffraction-based snapshot hyperspectral imaging method with a novel diffractive optical element attached to a conventional,
bare image sensor. Our method replaces the common optical elements in hyperspectral imaging (prism, coded mask, relay and imaging lenses) with a single
optical element. Our single DOE-based camera is coupled with a data-driven spectral reconstruction method that can restore faithful spectral information from
spectrally-varying point spread functions. (a) Our fabricated DOE (inset) and a DSLR camera, installed with the DOE for spectral imaging. (b) Reconstructed
hyperspectral image from real input. (c) Spectrally-varying PSFs measured per wavelength. (d) Corresponding captured spectral channels. (e) Spectral plots of
two patches from the captured ColorChecker, compared to the ground truth.

Traditional snapshot hyperspectral imaging systems include various optical
elements: a dispersive optical element (prism), a coded aperture, several
relay lenses, and an imaging lens, resulting in an impractically large form
factor. We seek an alternative, minimal form factor of snapshot spectral
imaging based on recent advances in diffractive optical technology. We there-
upon present a compact, diffraction-based snapshot hyperspectral imaging
method, using only a novel diffractive optical element (DOE) in front of a
conventional, bare image sensor. Our diffractive imaging method replaces
the common optical elements in hyperspectral imaging with a single optical
element. To this end, we tackle two main challenges: First, the traditional
diffractive lenses are not suitable for color imaging under incoherent illu-
mination due to severe chromatic aberration because the size of the point
spread function (PSF) changes depending on the wavelength. By leveraging
this wavelength-dependent property alternatively for hyperspectral imag-
ing, we introduce a novel DOE design that generates an anisotropic shape
of the spectrally-varying PSF. The PSF size remains virtually unchanged,
but instead the PSF shape rotates as the wavelength of light changes. Sec-
ond, since there is no dispersive element and no coded aperture mask, the
ill-posedness of spectral reconstruction increases significantly. Thus, we pro-
pose an end-to-end network solution based on the unrolled architecture of
an optimization procedure with a spatial-spectral prior, specifically designed
for deconvolution-based spectral reconstruction. Finally, we demonstrate
hyperspectral imaging with a fabricated DOE attached to a conventional

Authors’ addresses: Daniel S. Jeon; Seung-Hwan Baek; Shinyoung Yi, KAIST, School of
Computing, Daejeon, South Korea, 34141; Qiang Fu; Xiong Dun; Wolfgang Heidrich,
KAUST, Visual Computing Center, Thuwal, 23955-6900; Min H. Kim, KAIST, School of
Computing, Daejeon, South Korea, 34141, corresponding_author:minhkim@kaist.ac.kr.

© 2019 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3306346.3322946.

DSLR sensor. Results show that our method compares well with other state-
of-the-art hyperspectral imaging methods in terms of spectral accuracy and
spatial resolution, while our compact, diffraction-based spectral imaging
method uses only a single optical element on a bare image sensor.
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1 INTRODUCTION
Hyperspectral imaging has been utilized in various sensing applica-
tions, such as biomedical inspection, material classification, material
appearance acquisition, digital heritage preservation, forensic sci-
ence, etc. [Kim and Rushmeier 2011; Kim et al. 2012b, 2014; Nam
and Kim 2014]. Based on geometrical optics, various hyperspectral
imaging systems have been developed for snapshot imaging of dy-
namic objects and include various optical elements: a dispersive
optical element (prism or diffraction grating), a coded aperture mask,
several relay lenses, and an objective imaging lens. The dimensions
of a typical compressive hyperspectral imager are larger than those
of a conventional camera; for instance, its length is greater than a
meter [Kim et al. 2012a; Lee and Kim 2014; Lin et al. 2014]. Actual
imaging applications are limited to laboratory environments.

To overcome these limitations of mobility in existing snapshot hy-
perspectral systems, the primary objective of this work is to propose
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a novel paradigm for diffraction-based hyperspectral imaging using
a single optical element. Based on recent advances in diffractive
optical technology, we propose a diffraction-based snapshot hyper-
spectral imaging method that replaces the common optical elements
in hyperspectral imaging systems with a thin diffractive optical
element (DOE), which can be attached directly to a conventional,
bare image sensor. Figure 1(a) shows our DOE. It thus circumvents
the need for many optical elements and has a minimal impact on the
form factor, allowing casual users to capture hyperspectral images.

Using a single diffractive imaging lens to capture a hyperspectral
image presents two main technical challenges: First, the tradi-
tional diffractive lenses are not suitable for full-spectrum imaging
under incoherent illumination due to severe chromatic aberration,
which is caused by the physical phenomenon where the size of
an isotropic point spread function (PSF) changes depending on
the wavelength [Heide et al. 2016; Peng et al. 2016; Sitzmann et al.
2018]. Second, since there is no refractive optical element for disper-
sion and no coded aperture mask, spectral cues via a DOE spread
widely, requiring deconvolution of a large kernel for spectral re-
construction. Therefore, the ill-posedness of spectral reconstruction
increases more significantly in the diffractive imaging setup than in
the conventional compressive spectral imaging setup.
To resolve these challenges, we make the following contribu-

tions: First, to minimize the form factor of spectral imaging optics,
we introduce a novel design of a diffractive imaging lens, which com-
bines two main functions of dispersion and imaging for hyperspec-
tral imaging into a single diffractive optical element. We leverage
the wavelength dependency of Fresnel diffraction so that our DOE
design leads to an anisotropic shape of the spectrally-varying point
spread function. Unlike the traditional Fresnel lens, the PSF size of
our DOE remains virtually unchanged, but instead the PSF shape
rotates as the wavelength of light changes. The spectrally-varying
diffracted rotation feature of the anisotropic PSF is used as a critical
cue for spectral reconstruction. Second, we mitigate the increased
ill-posedness of spectral reconstruction caused by the absence of
the common optical elements by devising an end-to-end reconstruc-
tion network. We propose an end-to-end network solution based
on the unrolled architecture of an optimization procedure with a
spatial-spectral prior, specifically designed for deconvolution-based
spectral reconstruction. It reconstructs spectral information faith-
fully from diffracted rotation, instead of applying the traditional
optimization method with a handcrafted prior.
In summary, our three novel contributions are as follows:

• We introduce a diffractive imaging lens that leads to an an-
isotropic shape of the spectrally-varying PSF and we thereby
achieve imaging and dispersion with a single DOE.

• We mitigate the ill-posedness of spectral reconstruction in
our diffractive imaging setup by devising an end-to-end re-
construction network based on the unrolled architecture of
an optimization procedure with a spatial-spectral prior.

• On the basis of our DOE, we propose a compact, diffraction-
based hyperspectral imaging system that consists of a single
optical element on a bare image sensor.

2 RELATED WORK
Hyperspectral imaging. Hyperspectral imaging has been researched

extensively to enable physically meaningful imaging beyond human
vision in the last decade [Kim 2013]. State-of-the-art methods can
be grouped into three different types: spectral scanning, computed
tomography imaging, and snapshot compressive imaging. Based
on a dispersive optical element, such as a prism or a diffraction
grating, scanning-based approaches can capture each wavelength
of light in isolation through a slit: so-called whiskbroom or pushb-
room scanners [Brusco et al. 2006; Porter and Enmark 1987]. While
scanning yields high spatial and spectral resolution, the target sub-
jects are limited to static objects or remote scenes. In contrast, our
method captures a snapshot with continuous dispersion using a sin-
gle diffractive optical element, enabling snapshot spectral imaging.

Computed tomography imaging spectrometry (CTIS) [Habel et al.
2012; Johnson et al. 2007; Okamoto et al. 1993] was introduced tomit-
igate the limitations of scanning methods. It employs a diffraction
grating with imaging and relay lenses. The grating splits the colli-
mated incident light into diffraction patterns in different directions
while sacrificing the spatial resolution for computed tomography.
Coded aperture snapshot spectral imaging (CASSI) [Gehm et al.
2007; Jeon et al. 2016; Kim et al. 2012a; Wagadarikar et al. 2008]
was introduced for capturing dynamic objects. A dispersive optical
element is coupled with a coded aperture through relay lenses to en-
code spectral or spatial-spectral signatures. The compressive input
is reconstructed later. These two types of snapshot spectral imaging
both require several geometric optical elements to collimate and
disperse light (or modulate light for CASSI), making them bulky and
hard to handle in practice. Recently, Baek et al. [2017] introduced a
compact spectral imaging method to enhance mobility. However,
since the method is still based on geometrical optical elements, it
requires a prism attached in front of a DSLR camera. In contrast,
our method requires only a single diffractive imaging lens in front
of a conventional bare image sensor.

Diffractive optical elements. A diffractive optical element, such as
a diffraction grating, has been commonly used in the traditional hy-
perspectral imagers [Habel et al. 2012; Johnson et al. 2007; Okamoto
et al. 1993] or spectroradiometers owing to its high diffraction effi-
ciency. Recently, Wang and Menon [2015; 2018] introduced several
diffractive filter arrays for multi-color imaging without conven-
tional Bayer-pattern color filters. However, such a diffractive optical
element should be installed through a geometrical optical system
with an additional imaging lens whereas our method requires only
a single optical element for hyperspectral imaging.

Diffractive imaging. Traditional diffractive imaging has been de-
vised for monochromatic (coherent) light of a single wavelength, due
to chromatic aberration. Recently, diffractive RGB imaging methods
have been introduced even for incoherent illumination. Peng et
al. [2018; 2016] introduced achromatic Fresnel lenses that do not
suffer from chromatic aberration by creating an unchanged isotropic
PSF over the full visible spectra. Heide et al. [2016] also presented
diffractive RGB imaging with adjustable optics parameters, such as
focal length and zoom, via mechanical alignment of two diffractive
optics. Asif et al. [2017] introduced a lensless imaging sensor using
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diffraction through a coded aperture. A target object at a fixed dis-
tance can be captured as an RGB image of three channels. Sitzmann
et al. [2018] proposed an end-to-end optimization method of diffrac-
tive optical elements by adopting a gradient-based optimization
framework. They devise a custom achromatic Fresnel optics with
enhanced resolution. To date, for state-of-the-art diffractive imaging,
researchers have focused on RGB imaging to capture all-in-focus
images of full visible spectra with enhanced focus. To the best of our
knowledge, our work is the first diffractive hyperspectral imaging
method that only uses a single diffractive imaging lens on a bare
sensor.

Depth and wavelength dependency of PSF. The point spread func-
tion, created by a diffractive optical element, depends on both wave-
length and depth, changing its shape accordingly. By leveraging the
depth dependency instead, depth imaging and light field imaging
have been introduced, assuming that incident light is coherent with
a single wavelength in general. For instance, Greengard et al. [2006]
found that the PSF spins when depth changes and this property
enables depth imaging under monochromatic illumination. Antipa
et al. [2018; 2016] captured the light field from a snapshot captured
with diffraction. The PSF of the optical element is a caustic pattern,
which depends on depth. Tajima et al. [2017] introduced a Fresnel
zone aperture to capture a light field using the depth dependency
of the PSF even with incoherent light. These methods exploit the
depth dependency of the PSF to capture depth or the light field. In
contrast, we rely on wavelength dependency, enabling snapshot
spectral imaging of objects at various distances. We introduce a
novel diffractive imaging lens with a specific DOE design so that the
depth dependency of the PSF can be converged to a particular shape
beyond a certain depth, targeting conventional imaging scenarios.

Spectral reconstruction. Different from conventional RGB cam-
eras, snapshot spectral imagers capture compressed signals of dense
spectral samples, which need to be reconstructed by a post process.
Since hyperspectral reconstruction is a severely ill-posed problem
(inferring dense spectral information from a monochromatic, en-
coded image), several optimization approaches have been proposed
by defining a data fidelity term and specific image priors, such
as a total variation (TV) l1-norm regularization [Jeon et al. 2016;
Kim et al. 2012a; Kittle et al. 2010] or pretrained dictionary [Lin
et al. 2014]. A common characteristic of these approaches is the
tradeoff between spatial resolution and spectral accuracy in the
reconstructed results. To mitigate this tradeoff, Choi et al. [2017]
proposed a data-driven prior trained using an autoencoder network,
and Choudhury et al. [2017] exploit convolutional sparse coding as
a hyperspectral prior. They reduce the ill-posedness of the problem
by means of data-driven representations of natural hyperspectral
images. However, their reconstruction is not entirely an end-to-
end optimization solution because they trained the natural spectral
prior separately from the image reconstruction framework. In con-
trast, we introduce an entirely end-to-end reconstruction method
for capturing high-fidelity hyperspectral images. Specifically, we
designed an unrolled network architecture with a data-driven prior
that learns spatial-spectral characteristics of spectral images, en-
abling robust end-to-end hyperspectral reconstruction from the
diffracted rotation.

Fig. 2. (a) Schematic diagram of diffractive imaging via a DOE and its PSF.
(b) Our DOE design.

3 DIFFRACTION MODEL
This section covers the foundations of Fresnel diffraction for better
understanding. We describe our diffraction model for diffractive
imaging. Suppose a point light source that emits a wave field, illu-
minates a camera that consists of a diffractive lens and a bare image
sensor at sensing depth z. When imaging the wave field propagated
from the source, a point spread function pλ (x ,y) of wavelength λ
represents the intensity image on the sensor.
Suppose a monochromatic incident wave field u0 at position

(x ′,y′) of the DOE coordinate system with amplitude A, phase ϕ0,
and wavelength λ passes through a diffractive optical element:

u0
(
x ′,y′

)
= A

(
x ′,y′

)
eiϕ0(x ′,y′). (1)

A phase shift ϕh occurs by the DOE. See Figure 2(a). The wave field
u1 after passing through the DOE can be formulated as

u1
(
x ′,y′

)
= A

(
x ′,y′

)
ei(ϕ0(x ′,y′)+ϕh (x ′,y′)). (2)

The amount of phase shift ϕh at point (x ′,y′) is determined by the
height profile of the DOE h (x ′,y′) as

ϕh
(
x ′,y′

)
=

2π
λ
∆ηλh

(
x ′,y′

)
, (3)

where ∆ηλ is the difference between the refractive indices of the
air and the substrate of the DOE per wavelength λ. When the wave
field reaches the imaging sensor, the wave field u2(x ,y) on the
sensor plane at depth z from the DOE can be obtained from the field
u1 (x ′,y′) by the Fresnel diffraction law [O’Shea et al. 2003] such
that λ ≪ z:

u2 (x ,y) =
eikz

iλz

∬
u1

(
x ′,y′

)
e
ik
2z

{
(x−x ′)2+(y−y′)2

}
dx ′dy′, (4)

where k = 2π/λ is the wavenumber, that is, the spatial frequency
of a wave.

Plane wave assumption. We design our optical system to be fo-
cused at infinity. In this setting, the incident light from a light
source along the optical axis can be described as a plane wave
u0 (x ′,y′) = Aeiϕ0 with constant amplitude A and constant phase
ϕ0. This alleviates the mathematical complexity of designing our
DOE. The wave field u2 incident on the sensor plane then can be
obtained from Equations (2) and (4) as

u2 (x ,y) =
eikz

iλz

∬
Aei {ϕ0+ϕh (x ′,y′)}e

ik
2z

{
(x−x ′)2+(y−y′)2

}
dx ′dy′.

(5)
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The PSF pλ (x ,y) is the intensity of the squared value of the wave
field u2. Finally, given a point light, by representing the Fresnel
integral in a Fourier transform, pλ (x ,y) is formulated as

pλ (x ,y) ∝
���F [

Aeiϕh (x
′,y′)ei

π
λz (x

′2+y′2)
] ���2 . (6)

In Section 8.1, we analyze the behavior of the optical design for
closer objects, and describe the focal range of the camera.

4 HYPERSPECTRAL IMAGING WITH DIFFRACTED
ROTATION

Overview. Different from the traditional hyperspectral imaging
methods, our hyperspectral imaging method consists of a single op-
tical component and a conventional bare image sensor. Our diffrac-
tive optical element replaces common optical elements for hyper-
spectral imaging (a dispersive optical element, a coded aperture,
and relay lenses) with a single DOE. On the other hand, our mini-
mal, optical configuration causes demanding challenges for recon-
structing hyperspectral images from compressive input because
the ill-posedness of spectral reconstruction increases significantly
by the absence of the critical optical elements for hyperspectral
imaging: a dispersive element and a code aperture. We mitigate
the ill-posedness by introducing a novel design of the diffractive
optical element such that the point spread function by our DOE
is variant to spectral wavelength, spinning the anisotropic shape
of the spectrally-varying PSF in an unchanged size. This designed
feature becomes a critical cue for spectral reconstruction later.

4.1 Design of the Diffractive Optical Element
Dissimilar to geometric optics, wherein the focus plane exists at a
position where parallel rays converge to a point, the focus plane of a
diffractive lens exists at a depth point that gives rise to constructive
interference of the incident wave field. A traditional Fresnel lens
customizes its height profile to each radius to ensure constructive
interference occur with a specific wavelength, e.g., 550 nm. The
geometric shape of the height map is isotropic about its center of
the Fresnel lens. When a light source is incoherent with varying
wavelengths, the PSF of the Fresnel lens, shown in Figure 3, changes
as the wavelength of the light source varies.

Design insight. As the traditional Fresnel lens can focus only on a
specific wavelength, the focus blur of visible wavelengths has been
a long-lasting problem in color imaging with diffractive optics. To
achieve hyperspectral imaging with a single optical element, we uti-
lize the focus dependence of the spectrum in an alternative manner.
We devise a new DOE design especially for hyperspectral imaging
that changes the angle of the phase profile for each wavelength
about the DOE center so that the incident wave of each wavelength
focuses along a specific direction to form a spectrally-varying PSF
with an anisotropic shape, which rotates depending on its wave-
length. This designed behavior of our PSF is beneficial for solving
the severely ill-posed deconvolution problem of the 3D spectral
tensor.

Modeling a height field. Suppose that we have a sensor plane at a
focus distance f from the DOE and a light source at optical infinity,
which emits a monochromatic plane wave with a wavelength of λ.

Fig. 3. This figure compares PSFs of a conventional Fresnel lens and our
diffractive lens with different wavelengths by simulation. In the full visible
spectrum, the Fresnel lens can be focused only at a specific wavelength
while our PSF is unchanged in terms of size and shape, but spinning instead.

Note that z in Equations (5) and (6) indicates an arbitrary propaga-
tion depth, but here f means a specific focus distance chosen for the
optical system. Consider the optical phase difference of two rays;
one is a ray that passes through the DOE center along the optical
axis, arriving at the center of the sensor plane, and the other is a
ray that passes through a point on the DOE with the radial distance
r and arrives at the center of the sensor plane. See Figure 2(a).

The phase difference of the two rays is the sum of (a) the phase
differences that occur by the difference of the geometrical paths,
denoted as ∆ϕд and (b) the differences of the phase shifts that occur
by the height map of the DOE, denoted as ∆ϕh . Now ∆ϕд and ∆ϕh
are represented as

∆ϕд =
2π
λ

(√
r2 + f 2 − f

)
, ∆ϕh =

2π
λ
∆ηλ∆h (r ) , (7)

where ∆ηλ is the difference between the refractive indices of the
substrate and the air, and ∆h(r ) B h(r )−h(0) is the height difference
of the DOE at the radial distance r with respect to the height at
the center. Constructive interference between the two rays requires
that the phase difference satisfies the following equation for some
integer n:

∆ϕд + ∆ϕh = 2πn. (8)

We can then represent the height map h in terms of r , λ and f from
Equations (7) and (8) by phase wrapping at 2π :

∆h (r ) =
λ∆ϕh
2π∆ηλ

=

(
2πn − ∆ϕд

)
λ

2π∆ηλ
=

nλ −
(√

r2 + f 2 − f
)

∆ηλ
. (9)

We then bound the height map ∆h in − λ
∆ηλ

≤ ∆h ≤ 0, which
corresponds to the phase from 0 to 2π of wavelength λ by choosing
integers n for each point. n is set to constrain the height map to the
minimum range.

Anisotropic spiral design. Unlike the conventional Fresnel lens,
our DOE is designed to make each part correspond to different wave-
lengths to enable spectral reconstruction from spectrally-varying
PSF. A key idea for designing our DOE is as follows: in the polar
coordinates (r ,θ ) of the DOE plane, each angular position θ cor-
responds to different wavelengths λ (θ ) so that our DOE has an
anisotropically-shaped height profile. Consider a line from the cen-
ter of the DOE to its edge. Each height profile along the line leads
to constructive interference of a wavelength of λ along the rotation
angle θ . For instance, Figure 2(b) shows our DOE design, whose
height at those different radii with different θs satisfies Equation (9)
with different wavelengths, respectively. Our angular wavelength
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matching is formed as

λ (θ ) =

{
λmin + (λmax − λmin)

N
2π θ 0 ≤ θ < 2π

N

λ
(
θ − 2π

N

)
θ ≥ 2π

N
, (10)

which is a periodic function with the period 2π
N and matches linearly

onto the wavelength range of the visible spectrum from 420 nm to
660 nm in each period. The number of periodsN is called the number
of wings since it actually produces a spiral-shaped PSF withN wings.
Now we can write the entire height map ∆h (r ,θ ) with this angular
wavelength matching λ (θ ) as follows:

∆h (r ,θ ) =
nλ (θ ) −

(√
r2 + f 2 − f

)
∆ηλ

, (11)

h (r ,θ ) = h (0, 0) + ∆h (r ,θ ) , (12)

whereh (0, 0) is set as the maximum height determined by the height
resolution of DOE fabrication. Figure 2 shows our DOE height map
designed with three wings (N = 3) and its spectrally-varying PSFs.
The spiral shape of the period is symmetrical about the center of the
120-degree rotation. We found that setting N = 3 in Equation (10)
gives the best reconstruction accuracy.

When thewavelength increases, the size of the PSF barely changes
and its shape rotates clockwise about its center. These PSFs have a
very clear spectral cue, diffracted rotation of the anisotropic shape.
Also, the size consistency and anisotropy of the PSFs are expected
to improve the accuracy of the reconstruction process. Figure 3
compares a traditional Fresnel lens and our DOE with their PSFs
with different wavelengths1. Refer to Section 7 for an evaluation in
terms of spectral reconstruction.

4.2 Spectral Image Formation
Our main objective is to capture hyperspectral images using a con-
ventional RGB image sensor with our diffractive lens under natural
incoherent illumination. Therefore, our image formation includes
the camera response function through color filters, but the quantum-
efficiency function for a monochromatic sensor can be used alter-
natively. Suppose that we want to capture a hyperspectral image
Iλ (x ,y) from a captured RGB image on the sensor Jc (x ,y) with a
spectrally-varying point spread functionpλ(x ,y) and that the sensor
has the sensor spectral sensitivity function Ωc (λ) for each color
channel c ∈ {r ,д,b}. The captured image Jc can be represented as

Jc (x ,y) =

∭
Ωc (λ) Iλ (µ,ν )pλ (x − µ,y − ν )dµdνdλ. (13)

The spectral image formation model can be simply expressed as

Jc (x ,y) =

∫
Ωc (λ) (Iλ ∗ pλ) (x ,y)dλ, (14)

where ∗ is defined as the convolution operator.
We can write the image formation model in a discrete vector-and-

matrix form. Let I ∈ RWHΛ×1 be the original hyperspectral image
vector and J ∈ RWH3×1 be the captured RGB image vector, where
W , H , and Λ are the width, height, and the number of wavelength
channels of a spectral image, respectively. We can represent the

1We simulate PSFs using a reference simulation tool of diffraction, LightPipes (http:
//www.okotech.com/lightpipes).

Fig. 4. Overview of our network architecture that consists of unfolded L-
time iterations as a chain of the subnetwork architecture that includes a
prior network (Figure 5). We learn parameters in an end-to-end manner.

Fig. 5. Network architecture of the prior network, based on U-net. Our
network consists of the feature encoding and the decoding parts with skip-
connections with soft-thresholding.

sensor sensitivity Ωc (λ) and the convolution by the PSF pλ (x ,y)
as matrices Ω ∈ RWH3×WHΛ and P ∈ RWHΛ×WHΛ, respectively.
The measurement matrix Φ ∈ RWH3×WHΛ is the product of Ω
and P. We then represent the continuous image formation model in
Equation (14) in a discrete matrix form:

J = ΦI. (15)

5 SPECTRAL RECONSTRUCTION FROM DIFFRACTION
Our spectral reconstruction problem is to solve a combined mixture
of two subproblems: First, when capturing the input data, each spec-
tral channel is convolved with its spectrally-varying point spread
function. Therefore, a non-blind deconvolution needs to be con-
sidered to reconstruct clear spectral channels. Second, the blurred
spectral channels of the entire visible spectrum are also projected
to three color channels of the image sensor (or one channel for
a monochromatic sensor). The combination of these two inverse
problems significantly increases the ill-posedness of spectral recon-
struction. State-of-the-art spectral reconstruction methods take a
data-driven approach [Choi et al. 2017; Lin et al. 2014] that mainly
learns the prior information of natural spectral images and then
formulates an optimization problem separately to reconstruct hy-
perspectral images with a handcrafted prior. They are not fully
end-to-end solutions and also require heavy computational costs for
the optimization process. In this work, we devise a complete end-
to-end reconstruction method based on the optimization procedure
with a spatial-spectral prior to account for spectral deconvolution
with the rotating PSF.

5.1 Optimization Problem
SinceWH3 ≪WHΛ in Equation (15), our hyperspectral image re-
construction problem is a severely under-determined system. There
could be many solutions that satisfy the input measurement. To
reconstruct a hyperspectral image Î ∈ RWHΛ×1, an objective func-
tion of spectral reconstruction requires a prior of spectral images in
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addition to the data term as follows:

Î = argmin
I

∥J − ΦI∥22 + R (I) , (16)

where R(·) represents an unknown prior function of spectral images.
As this regularization term is not often necessarily differentiable
in optimization, we decouple the data term and the regularization
term by reformulating Equation (16) as a constrained optimization
problem by introducing an auxiliary variable V ∈ RWHΛ×1:

(Î, V̂) = argmin
I,V

∥J − ΦI∥22 + R (V) s.t. V = I. (17)

The half-quadratic splitting (HQS) method can convert Equation (17)
into an unconstrained optimization problem:

(Î, V̂) = argmin
I,V

∥J − ΦI∥22 + ς ∥V − I∥22 + R (V) , (18)

where ς is the penalty parameter. Equation (18) can be solved by
splitting it into two subproblems:

I(l+1) = argmin
I

∥J − ΦI∥22 + ς
V(l ) − I

2
2
, (19)

V(l+1) = argmin
V

ς
V − I(l+1)

2
2
+ R (V) , (20)

where I(l ) and V(l ) are the solutions for the l-th HQS iteration.
Since the measurement matrix of the spectral imager is very

large, calculation of the inverse part of the equation requires heavy
computational cost. To mitigate the cost issue, we take the gradient
descent method alternatively to solve Equation (19). Solving it once
provides sufficient convergence to a local optimal [Dong et al. 2018].
In this way, the solution of Equation (19) can be expressed as

I(l+1) = I(l ) − ε
[
Φᵀ

(
ΦI(l ) − J

)
+ ς

(
I(l ) − V(l )

)]
= Φ̄I(l ) + εI(0) + εςV(l ),

(21)

where Φ̄ = [(1 − ες) 1 − εΦᵀΦ] ∈ RWHΛ×WHΛ and ε is the gradient
descent step size. For each optimization iteration stage, it updates the
hyperspectral image I(l+1) with three parts. The first part calculates
gradients of the measurement matrix by multiplying I(l ) with Φ̄. The
second part comes from I(0) = ΦᵀJweighted by the parameter ε . The
third part computes the prior termweighted by ες . This optimization
iteration is repeated L times.

5.2 Hyperspectral Prior Network
As the HQS algorithm separates the measurement matrix Φ from
the unknown regularizer R (·), the prior term in Equation (20) can
be represented in the form of a proximal operator. Here, instead
of using a handcrafted image prior like the TV-l1 norm [Choi et al.
2017], we instead define a network function S(·) for hyperspec-
tral images, which yield the auxiliary variable of the image prior:
V(l+1) = S(I(l+1)) by solving Equation (20) in a form of a neural
network with soft-thresholding, following ISTA-Net [Zhang and
Ghanem 2018]. Figure 5 shows the architecture of the hyperspectral
prior network.
We devise this prior network architecture with two main objec-

tives: First, the network should learn both spatial and spectral prior
of spectral images. Second, the network should reconstruct spec-
tral images from diffracted rotation of the PSF. To account for the

spectral deconvolution with a relatively large kernel, we adopt the
U-net [Ronneberger et al. 2015] to utilize a multi-scale architecture
to cover a large receptive field. In our network, the first convolu-
tional layer uses 3 × 3 × Λ filters to produce a tensor with a feature
size of Γ, where Λ is set to 25 and Γ is set to be larger than 64 to
enforce the sparsity of spectral gradients. The network then gener-
ates multi-scale features with a contracting path with max-pooling
and an expansive path with up-convolution layers. For each level,
two convolutional layers encode spatial-spectral features. With skip
connections, the scaled features are concatenated with upper scale
features. Finally, we produce a tensor of original hyperspectral cube
size with a convolutional layer with 3 × 3 × Γ filters.

5.3 Optimization-based Unrolled Network
Recently, state-of-the-art optimization-based unrolled network ar-
chitectures [Dong et al. 2018; Wang et al. 2019; Zhang and Ghanem
2018; Zhang et al. 2017] were proposed by adopting, for instance,
the traditional ADMM and ISTA methods in a neural network form,
and they outperform existing methods for image restoration. Our
method also adapts this recent advance in neural network research
in our hyperspectral reconstruction problem but with three main
differences: First, the ill-posedness of our spectral reconstruction
problem is significantly higher than that of the other image restora-
tion problems because our rotating PSF occupies a larger area than
an ordinary PSF. To address these characteristics, we design our
spatial-spectral prior network with the U-Net architecture to make
the perceptive field wide and also combine it with soft-thresholding
to achieve local gradient smoothness. Second, instead of using a
handcrafted sparsity prior, we learn the unknown spatial-spectral
prior directly from spectral images. To do so, we formulate our
optimization problem such that it is differentiable using the HQS for-
mulation, which is solved with the Tikhonov regularization [Zhang
et al. 2017]. Lastly, we use the l1-norm loss function when training
the network in order to compensate for the absence of the sparsity
prior in our network. Figure 4 provides an overview of our network
architecture.
We train the full network by end-to-end learning including the

weight parameters of the spectral prior network and the optimiza-
tion parameters: the gradient descent step size parameter ε and
the penalty parameter ς . Note that all these parameters are learned
separately for each stage through L number of iterations, following
Wang et al. [2019], because the optimization parameters should be
updated adaptively as the input quality of each stage increases.

6 IMPLEMENTATION DETAILS
DOE fabrication. Our 16-level hyperspectral DOE is fabricated by

iteratively applying photolithography and reactive-ion etching (RIE)
techniques [Heide et al. 2016]. The substrate is a 0.5mm thick 4-inch
fused silica wafer with both sides polished. In the photolithography
step, we use a pre-designed binary mask and ultra-violet illumina-
tion to transfer the desired patterns to a photoresist layer formed
on the substrate by spin-coating. To ensure high resolution in the
pixelated patterns, we create masks with 1µm resolution by a high
resolution direct laser writer. After chemical development, we can
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Fig. 6. (a) is a microscopic 3D profile of our fabricated DOE, measured
by a Zygo NewView 7300 profiler. It is mounted on a custom-built 3D-
printed structure at 50mm focal length. (b) shows measured PSFs of our
fabricated DOE in the wavelength range from 420nm to 650nm. Intensities
are normalized for visualization.

generate the desired pattern areas on the fused silica, which is ex-
posed to air. In the RIE step, we apply plasma gases in a vacuum
chamber to etch these exposed areas to specific depths. Auxiliary
layers are then removed chemically afterwards. Each iteration of
the photolithography and subsequent RIE procedures doubles the
number of stairs in the microstructure, and hence we can obtain 16
levels by four iterations. The depth interval for each stair is 100 nm
in our hyperspectral DOE. The maximum height of our DOE at its
center is 0.5mm. Theoretical analysis and experimental results have
shown that 16-level DOEs can offer sufficient diffraction efficiency
for wide-spectrum imaging applications [Heide et al. 2016; Peng
et al. 2015, 2016; Sitzmann et al. 2018; Swanson 1991]. Figure 6(a)
shows a fabricated DOE. Our measured PSFs in Figure 6(b) present
good agreement with our synthetic PSFs shown in Figure 3.

Spectral calibration. We built our prototype camera by installing
the fabricated DOE (its diameter is 1mm and its focal length is
50mm) in front of a Canon EOS 5D Mark III having resolution of
5760× 3840 and pixel pitch of 6.22 um. A custom-design 3D-printed
holder is fabricated to firmly attach the DOE to the camera. We use
demosaicked RGB signals as input, captured without adaptive white
balancing so that we carefully chose the target spectral range of the
reconstruction as 25 spectral channels from 420 nm to 660 nm with
10 nm bandwidth each in consideration of the spectral response
function for the DSLR camera [Baek et al. 2017]. In our image forma-
tion (Equation (15)), we directly calibrate the measurement matrix Φ,
the product of the camera function Ω and the spectrally-varying
PSF P.
To calibrate spectrally-varying PSFs, we build an experimental

setup where a solid-state plasma light source (Thorlabs HPLS-30-04)
is covered with a Thorlabs high-precision pinhole of 1mm diameter
at a distance of 8.03m from the camera in a dark room such that
the point light is captured within less than a pixel with a focal
length of 50mm. The spectral power distribution is measured by a
spectroradiometer (SpectraScan 655). The incident light is filtered by
a Varispec visible liquid crystal tunable filter with 10 nm intervals
and captured by the camera with varying exposures. Later, the
intensity of the captured PSFs is adjusted with exposure scalers.
Figure 6(b) shows examples of captured spectrally-varying point
spread functions.

Network architecture. For training, we used 238 hyperspectral im-
ages, publicly available from the Harvard [Chakrabarti and Zickler
2011], ICVL [Arad and Ben-Shahar 2016], and KAIST datasets (58
images, 150 images, and 30 images, respectively). To achieve scale
invariance, we augmented the input datasets by scaling them to two
additional resolutions (half and double) following [Simonyan and
Zisserman 2015]. This results in a training dataset of 714 hyperspec-
tral images. To enhance the sensitivity to noise in reconstruction,
we added synthetic Gaussian noise with a standard deviation of
0.005. For testing, we excluded 10 images in the KAIST dataset from
the training process for evaluation of the reconstruction accuracy
in this paper. With real input, the resolution of the real camera is
scaled by half to make it compatible to that of the trained network.
Each hyperspectral image includes 25 wavelength channels in a
range from 420 nm to 660 nm.

We implement our neural network architecture design of spectral
reconstruction (Section 5) using TensorFlow [Abadi et al. 2016]. We
sampled 30,000 tensor patches of size 256×256×25 from the aug-
mented dataset for training the network. We optimize the spectral
reconstruction problem (Equation (18)) using the stochastic gradi-
ent method with the ADAM optimizer [Kingma and Ba 2014]. The
batch size is set to 16 with a learning rate of 10−3 for gradient de-
scent. The learning rate is adaptively reduced by half in every 10
epochs. With Γ=64 feature channels and four levels in the U-net, it
took approximately 30 hours to train the network, using a machine
equipped with a workstation of Intel i7-3770 CPU 3.40GHz with
32GB of memory and an NVIDIA Titan Xp GPU with 12GB of
memory. We downscale the input image and the point spread func-
tion to half the size to match the GPU’s memory size. It took about
3.22 seconds to reconstruct a hyperspectral image with 1440×960
resolution through inference using our network.

7 RESULTS

7.1 Comparison with Other Spectral Imaging Systems
We compare our proposed system with two existing hyperspec-
tral cameras, DD-CASSI [Gehm et al. 2007] and a prism-based sys-
tem [Baek et al. 2017]. To compare the spectral accuracy, we sim-
ulated the image formation models of the three systems with ten
testing images from a hyperspectral image dataset [Choi et al. 2017].
The DD-CASSI result is reconstructed by TwIST [Bioucas-Dias and
Figueiredo 2007] and the prism method is reconstructed by the
authors’ implementation. Table 1 shows the average peak signal-to-
noise ratio (PSNR), structural similarity (SSIM), and spectral angle
mapping (SAM) [Kruse et al. 1993] error indices for the test dataset
of ten hyperspectral images (not used for training). Figure 7 shows
that our system provides the most accurate reconstruction results
in terms of both spatial and spectral accuracy, while our diffraction-
based spectral imaging method uses only a single optical element
on a bare sensor.

7.2 Comparison with Other Spectral Reconstructions
As mentioned above, we excluded ten hyperspectral images from
the KAIST dataset when training our reconstruction network. We
made use of these ten images to evaluate the spectral accuracy of
our reconstruction method, compared with that of three existing
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Fig. 7. We compare our system with two different existing hyperspectral imaging systems, DD-CASSI [Gehm et al. 2007] and a prism-based system [Baek
et al. 2017] with ten ground-truth spectral images.

Fig. 8. We compare the results of our reconstruction method with three existing methods (TVAL3 [Li et al. 2009], autoencoder [Choi et al. 2017] and
ISTA-Net [Zhang and Ghanem 2018]) using ten test hyperspectral images, which are not used in the training network. Four methods reconstruct spectral
images from input images (convolved with spectrally-varying PSFs).

Table 1. Average similarity to the ground truth in PSNR and SSIM, and
SAM errors of three different spectral imaging systems with ten test spectral
images. Bold text indicates the highest accuracy.

System DD-CASSI Baek2017 Ours
PSNR (dB) 28.44 29.67 35.88

SSIM 0.84 0.80 0.93
SAM 0.24 0.24 0.12

methods: TVAL3 [Li et al. 2009], autoencoder [Choi et al. 2017],
and ISTA-Net [Zhang and Ghanem 2018]. The TVAL3 method is an
optimization-based algorithm with total variation as a sparsity prior
while the autoencoder and ISTA-Net method utilize deep learning

networks for the hyperspectral reconstruction. For the TVAL3 and
autoencoder methods, we fed our image formation model (Equa-
tion (15)) into their optimization frameworks with the input mea-
surements of RGB images convolved with spectrally-varying PSFs.
For the ISTA-Net method, we trained the network model with the
same dataset that we used for training our network. We applied
our image formation model to ISTA-Net to produce results. Note
that the sparse coding-based spectral reconstruction method [Lin
et al. 2014] was excluded in this experiment because it is not directly
applicable to our PSF-based configuration due to the large size of
the spectrally-varying PSFs.
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Fig. 9. We captured three natural scenes using our real prototype camera shown in Figure 6(a). We reconstructed hyperspectral images using the calibrated
PSFs of real input. The spectral plots compare our reconstruction results with the ground truth measured by a spectroradiometer.

Figure 8 demonstrates that our reconstruction method outper-
forms the other methods in terms of both spatial and spectral reso-
lution of reconstructed reflectances. Table 2 shows average PSNR,
SSIM and SAM indices for the test dataset of ten hyperspectral im-
ages.We found that in particular, the autoencoder method can recon-
struct traditional compressive CASSI input (with a coded aperture)
well, as shown in the original paper. However, their reconstruction
results become suboptimal with the DOE-based input because this
spectral reconstruction with the DOE is different from the original
formation, but it is a deconvolution problem with a large kernel
function of the PSF. Refer to the supplemental material for more
spectral image results.

Table 2. Average reconstruction similarity to the ground truth in PSNR
and SSIM, and SAM errors of four spectral reconstruction methods with
the same test dataset. Bold text indicates the highest accuracy.

Method TVAL3 Autoencoder ISTA-Net Ours
PSNR (dB) 32.06 28.22 33.37 35.88

SSIM 0.88 0.81 0.88 0.93
SAM 0.18 0.26 0.19 0.12

7.3 Evaluation of the Real System
Spectral accuracy. We evaluate the spectral accuracy of hyperspec-

tral images of a natural scene with a ColorChecker under daylight,
captured by our real camera prototype (shown in Figure 6(a)). Fig-
ure 10(a) shows a hyperspectral image and its 600 nm channel and
compares spectral power distributions of red, green and blue patches
with reference measurements by the professional spectroradiometer
(used in calibration). The spectra of three primary patches recon-
structed by our method closely match the ground truth spectra.

Fig. 10. Quantitative evaluation of our real hyperspectral imaging system
with the fabricated DOE, shown in Figure 6. (a) shows reconstructed hy-
perspectral image (displayed as an sRGB image) and a spectral channel of
600 nm. It compares red, green and blue patches’ spectra with the ground
truth. (b) demonstrates the spatial accuracy of our reconstruction. We com-
pare the modulation transfer functions of the input image and the output
reconstruction using the square region.
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Spatial resolution. Figure 10(b) compares the input image of the
green channel to the reconstructed image of the 550 nm wavelength.
The MTF function is improved significantly after our spectral re-
construction process.

Casual hyperspectral imaging. Our system is compact, consisting
of only a thin diffractive lens and a bare sensor. Thereby, our system
enables casual hyperspectral imaging of indoor and outdoor scenes,
as shown in Figures 1 and 10. Also, Figure 9 shows additional results
for three scenes. For each real input, we present the reconstructed
hyperspectral images (displayed as an sRGB image) with 25 spectral
channels. We compare our spectral measurements with the ground-
truth data measured by the spectroradiometer.

Fresnel lens vs. our DOE. We compare a traditional Fresnel lens
and our diffractive lens with respect to hyperspectral imaging. Two
different input images are simulated using these two diffractive
lenses, and then they both are reconstructed as hyperspectral im-
ages using our reconstruction network: One network is trained
with the isotropic PSFs of the Fresnel lens, and the other network is
trained with the anisotropic PSFs of our DOE. Since the Fresnel lens
produces differently sized PSFs per wavelength, it could provide
cues for spectral reconstruction. Our reconstruction network can
estimate spectral images from the ordinary Fresnel lens because our
spatial-spectral prior network can learn the wavelength-dependent
characteristics of the Fresnel-lens PSFs. However, as shown in Fig-
ure 11, the spectral information reconstructed from the Fresnel
input does not closely match the ground-truth data. The wavelength-
dependent change of the isotropic PSF size is not fully sufficient for
reconstructing spectral images with high accuracy. In contrast, our
anisotropic spectrally-varying PSF enables spectral reconstruction
with high accuracy.

Fig. 11. The first row compares our reconstruction results using a tradi-
tional Fresnel lens and our diffractive lens with the ground truth, and the
second row shows the spectral plots of the results. Our DOE allows for more
accurate spectral reconstruction.

8 DISCUSSION

8.1 Spatial Variation of PSF
Depth dependency. As described in Sections 3 and 4.1, we designed

the DOE height profile, assuming that a plane wave emitted by the

point source at optical infinity causes constructive interference at
the center of the sensor plane and that the PSF is depth invariant.
However, this assumption is impractical for real-world imaging sce-
narios. We thereby verify that our DOE actually causes constructive
interference at the sensor center with a point source at a finite depth
Z , which emits a spherical wave.

Suppose a point light source at a depth Z illuminates our camera
that consists of the DOE and the sensor at sensing depth z. The
spherical wave fieldu0 emitted by the source incident to the DOE can
be represented by substituting the amplitude A ∝ 1/

√
x2 + y2 + Z 2

and phase ϕ0 = k
(√

x ′2 + y′2 + Z 2 − Z
)
in Equation (1) as follows:

u0
(
x ′,y′;Z

)
∝

1√
x ′2 + y′2 + Z 2

e
ik

(√
x ′2+y′2+Z 2−Z

)
. (22)

Here we can assume
√
x ′2 + y′2 + Z 2 ≈ Z since the aperture size

is negligibly smaller than the depth practically. The x ′,y′-variance
of the field u0 then becomes: u0(x ′,y′;Z ) ∝ 1

Z e
ik (

√
x ′2+y′2+Z 2−Z ).

The wave fieldu1 just after passing through the DOE is also obtained
by adding the phase ϕh as

u1
(
x ′,y′;Z

)
∝

1
Z
e
i
{
k
(√

x ′2+y′2+Z 2−Z
)
+ϕh (x ′,y′)

}
. (23)

The wave field u2 on the sensor plane can be obtained from u1 by
the Fresnel diffraction law shown in Equation (4). Finally, the depth
dependent PSF pλ (x ,y;Z ) is obtained from u2 and formulated as

pλ (x ,y;Z ) ∝
����F [

1
Z
e
i
{
k
(√

x ′2+y′2+Z 2−Z
)
+ϕh (x ′,y′)

}
ei

π
λz (x

′2+y′2)
] ����2 .
(24)

The depth dependent PSF shown in Equation (24) also contains a
special case for a plane wave, shown in Equation (6). If the aperture
size is significantly smaller than the depth, the point source is rela-
tively close to optical infinity (Z ≈ ∞), and

(√
x ′2 + y′2 + Z 2 − Z

)
≪ ϕh (x

′,y′) holds in Equation (24); Equation (24) can then be ap-
proximated as Equation (6).

Here this equation holds our assumption well when the depth Z
is relatively large enough, causing constructive interference at the
sensor center. However, if Z is relatively smaller than assumed,
the PSF shape changes with an unintended shape without making
constructive interference.We therefore determine a range of depthZ
that satisfies our assumption of the depth invariance experimentally.

We simulate PSF changes using our DOE at different depths from
0.5m to optical infinity (Figure 12). This figure shows PSF shapes and
the SSIM indices between PSFs at varying depths and the reference
PSF at optical infinity. It verifies that for depth larger than about
1.0m, the depth variance of the PSF becomes negligible; i.e., the PSF
of our DOE mainly depends on the wavelength of light.

Therefore, in our experiment we can consider PSF variance only
with wavelength λ and denote the PSF as

pλ (x ,y) = pλ (x ,y;∞) . (25)

Position dependency. The PSF is mainly determined by the imag-
ing setup, specifically the DOE and the sensing distance f . However,
it also depends on the position of the point source. Actually, both
the x ,y position and the depth of the point source affects the PSF.
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Fig. 12. The depth invariance of DOE is observed when the depth is longer
than 1m; i.e., the structural similarity of PSFs increases significantly (higher
than 0.9). The aperture diameter is 1mm and the wavelength of light is
550 nm.

Fig. 13. The PSFs at different positions from the reference center to the end
of the vertical FOV are compared within the valid field of view of 27 degrees.
The position variance of the PSF is negligible with our optical configuration.

We assume that the spatial variance of the PSF, the variation that
occurs by the x ,y position, is negligibly small. To evaluate the im-
pact of the spatial position on the shape of the PSF, we compared
the PSFs at different positions from the reference center to the end
of the vertical field of view (∼27 degrees) of our real prototype. As
shown in Figure 13, the SSIM values of PSFs at different positions
decrease gradually when the position becomes further from the
optical center. The worst SSIM at the outside perimeter is still 0.91,
and therefore we can assume that the impact of position on the PSF
shape is negligible.

8.2 Comparison to Existing Compact Spectral Imaging
Baek et al. [2017] proposed the first compact snapshot spectral
imaging method that captures spectral images from dispersion over
edges. They installed a prism in front of a conventional DSLR cam-
era so that the form factor of the system is significantly smaller than
that of previous spectral imaging systems. However, their method
is based on the traditional image formation of geometrical optics
and several chains of optimizations with a hand-crafted sparsity
prior, resulting in low performance in computation. In contrast, we
propose a new paradigm for spectral imaging with the diffractive
image formation model for designing the spectrally-varying PSF
and we solve the inverse problem of spectral reconstruction by sub-
stituting the traditional optimization procedure with an unrolled
neural network based on optimization with the data-driven spectral

prior. While both methods share the same objective, namely com-
pact hyperspectral imaging, they are based on completely different
principles.

8.3 Limitations
In this section, we further evaluate our method in the presence of
suboptimal conditions.

Edge property. Our reconstruction quality depends on the edge
frequency of an input image. If a scene does not have enough edge
information, the reconstruction quality degrades as shown in Fig-
ure 14(a). Also, our reconstruction remains relatively stable with
increasingly higher frequency patterns; however, it starts to degrade
when the edge structure is smaller than the PSF.

Illumination environments. We tested our real prototype under
different illumination environments other than daylight: solid-state
plasma illumination, which has many high-frequency changes. Fig-
ure 14(b) shows a corresponding result. Our reconstruction method
fails to recover these high-frequency spectral changes from the
plasma illumination for two reasons: First, our spectrally-varying
PSF can discriminate the spectral power distribution with a lim-
ited resolution. Second, most of our training datasets are mainly
captured under daylight illumination. More training datasets with
various types of illumination can mitigate this limitation, which
should be explored in future work. Although our method fails to
recover these high-frequency spectral changes, we can approximate
its low-frequency spectral component.

Fig. 14. (a) If large areas of the real input image lack edge details, our
spectral reconstruction quality degrades. (b) If scene illumination includes
high-frequency spectral changes, our reconstruction method fails to recover
these high-frequency spectral changes.

Spectral accuracy tradeoff. There is a tradeoff between the spec-
tral resolution and the spectral range in our PSF, because we need
to cover 300 nm of visible wavelength within a 120-degree angle
segment (repeated in three times). Furthermore, the reconstruction
accuracy of our method is improved with a relatively small size of
PSF due to the complexity of the 3D-tensor deconvolution problem,
while it sacrifices light efficiency. We capture all the real scenes with
exposure of 1/6 second.

Diffraction efficiency. We found that there is an image-quality gap
between the results produced by the synthetic and real DOE in our
method. Similar to state-of-the-art imaging methods with diffractive
optics [Peng et al. 2016], our real-DOE results suffer from milky
haze (shown in Figures 9 and 10). As described in Section 6, we use
a laboratory-scale foundry of diffractive optics to manufacture our
DOE with only 16 discrete levels and potential fabrication errors,
and thus there is a physical gap between the real fabrication and
the design of our DOE on a microscale. We speculate that the low
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resolution and the fabrication error of the DOE height field cause
the low diffraction efficiency of the fabricated DOE, resulting in
milky artifacts in the real results. We anticipate that an alternative
fabrication method, such as nano-imprinting, would reduce the gap
between the synthetic and real results, potentially improving the
image quality in a real system.

9 CONCLUSION
We have presented a compact, diffraction-based hyperspectral imag-
ing method that requires only a thin diffractive optical lens in front
of a conventional, bare image sensor in a compact form factor. We
have fabricated our DOE to build a prototype camera to capture var-
ious natural scenes with real input. We have demonstrated how our
diffraction-based spectral imaging method outperforms previous
hyperspectral imaging methods.

As we have seen, our method is sensitive to sensor noise and the
edge properties of the scene or the illumination of high-frequency
spectral changes; its performance may drop. Our results with real
input show milky artifacts due to the low diffraction efficiency of
the 16-level DOE. Addressing these issues is an interesting avenue
for future work.
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APPENDICES

A NOTATION TABLE
Table 3 provides the symbols and notation used in the paper.

Symbol Description

W
av
e
fie

ld

x ′,y′ DOE plane coordinates
x ,y Sensor plane coordinates
A (x ′,y′) Amplitude of a wave field
ϕ0 (x ′,y′) Phase of a wave field before passing through the DOE
ϕh (x

′,y′) Phase shift for a incident wave caused by the DOE
∆ϕh (x

′,y′) Phase difference between two paths
caused by the DOE height-level difference

∆ϕд Phase difference by geometric path difference
u0 (x ′,y′) Wave field on the DOE before passing through it
u1 (x ′,y′) Wave field on the DOE after passing through it
u2 (x ,y) Wave field on the sensor plane
λ Wavelength
λmin Minimum visible wavelength, 420nm
λmax Maximum visible wavelength, 660nm
k Wavenumber, k = 2π/λ
η Refractive index of glass

Sy
st
em

qu
an
tit
ie
s

Z Depth of a point light source
f Sensing distance, focal length
h (x ′,y′) Height level of a DOE in Cartesian coordinate
h (r ,θ ) Height level of a DOE in polar coordinate.
∆h (x ′,y′) Height level difference of the DOE w.r.t. the center,

in Cartesian coordinate. ∆h (x ′,y′) = h (x ′,y′)-h(0, 0)
∆h (r ,θ ) Height level difference of the DOE w.r.t. the center,

in polar coordinate. ∆h (r ,θ ) = h (r ,θ )-h(0, 0)
N Number of wings of height map (or PSF)
pλ (x ,y;Z ) Depth dependent PSF
pλ (x ,y) Depth invariant PSF
Ωc (λ) Sensor spectral sensitivity for each channel c

Im
ag
e
fo
rm

at
io
n

W Image width
H Image height
Λ Number of spectral channels for images
Iλ (x ,y) Original hyperspectral image
Îλ (x ,y) Reconstructed hyperspectral image
Jc (x ,y) Captured RGB image
I Original hyperspectral image as aWHΛ × 1 matrix
J Captured RGB image as aWH3 × 1 matrix
Ω Sensor sensitivity as aWH3 ×WHΛ matrix
P Convolution by the PSF as aWHΛ ×WHΛ matrix
Φ ΩP, aWHΛ ×WHΛ matrix

N
et
w
or
k

ς Penalty parameter
ϵ Gradient descent step size parameter
V Auxiliary variable
l Iteration number of optimization
Γ Feature size of a prior network

Table 3. Symbols and notation used in the paper.
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