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Abstract

Hair is one of the most challenging objects to recon-

struct due to its micro-scale structure and a large number

of repeated strands with heavy occlusions. In this paper,

we present the first method to capture high-fidelity hair ge-

ometry with strand-level accuracy. Our method takes three

stages to achieve this. In the first stage, a new multi-view

stereo method with a slanted support line is proposed to

solve the hair correspondences between different views. In

detail, we contribute a novel cost function consisting of

both photo-consistency term and geometric term that re-

constructs each hair pixel as a 3D line. By merging all

the depth maps, a point cloud, as well as local line direc-

tions for each point, is obtained. Thus, in the second stage,

we feature a novel strand reconstruction method with the

mean-shift to convert the noisy point data to a set of strands.

Lastly, we grow the hair strands with multi-view geomet-

ric constraints to elongate the short strands and recover

the missing strands, thus significantly increasing the recon-

struction completeness. We evaluate our method on both

synthetic data and real captured data, showing that our

method can reconstruct hair strands with sub-millimeter ac-

curacy.

1. Introductoin

Hair is an important way to define a person’s look, an

indispensable part of virtual human, and a key component

for many VR and AR applications. While there has been

great progress in capturing high-quality face [3], body [35]

or even teeth [37], not much attention has been paid to cap-

turing hair geometry. Owing to the microscale geometry of

hair strands, the large number of strands, and the heavy oc-

clusions and high similarity between strands, hair is proba-

bly one of the most challenging objects to capture for com-

puter vision methods, especially if our goal is for strand-

accurate reconstructions. Due to these challenges, directly

applying the traditional multi-view stereo (MVS) meth-

ods [10, 33] on the multi-view image data cannot achieve

satisfactory results, as MVS methods, to achieve a robust

correspondence matching, usually assume the local patch

to be a plane, which is obviously invalid for hair. There-
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photograph COLMAP ours

Figure 1. (Left) One of the photographs from multi-view capture.

(Middle) Final geometry by traditional MVS (COLMAP [33]).

(Right) Final geometry by our method. Our method can produce

high-fidelity hair geometry with strand-level accuracy.

fore, they are not able to reconstruct the fine-grained strand

structures, like flying strands against the background in Fig-

ure 1. Thus, to recover the strand structures, many hair cap-

ture techniques [15, 26] run the second step of strand fitting

to the reconstructed point cloud from MVS. Although the

previous methods properly capture the overall shape of hair

wisps, the reconstructed geometries often lack small-scale

details, e.g., flying strands.

To achieve strand-accurate capture, in this work we re-

think the right way for multi-view hair capture, and pro-

pose a new pipeline to reconstruct hair metrically. As a

first step, we reformulate the traditional multi-view stereo

algorithm with the strand-line assumption, specifically tar-

geting microscale thin geometry of hair. We propose to

use a local line support for effectively matching strand fea-

tures across views. Note that although hair is a 3D curve,

it can be seen as a connected strand of short line segments.

To help for matching, we design our novel cost function

to not only rely on the color correlation but also a new

geometry-consistency term enforcing the projected 2D line

from predicted 3D line to be consistent with 2D orienta-

tions detected in the images. This cost function is effi-
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Figure 2. An overview of our complete hair geometry reconstruction pipeline.

ciently minimized using the randomized optimization strat-

egy as PatchMatch [28] to estimate depth maps, which are

then merged to a point cloud. At this point, a counterpart

of meshing step [19] in MVS is necessary to fuse noisy

samples to a unique representation, i.e., strands. Therefore,

we contribute a new strand reconstruction algorithm from

point cloud using the mean-shift method [9]. The recon-

structed strands may be short segments, and some challeng-

ing strands may still be missing. We thus take a third step,

which propagates the current strands to its adjacent pixels,

i.e., growing the strands, by optimizing the same multi-view

geometric constraint as that in our MVS.

We evaluate our method on both synthetic and real cap-

tured data, demonstrating that our method can achieve sub-

millimeter accuracy quantitatively on the synthetic data and

pixel-accurate on the real data when projecting the recon-

structed strands to a novel view.

2. Related Work

Multi-view Stereo Multi-view stereo is a well-known

method to reconstruct 3D geometry from a set of images

captured from different views. One of the major challenges

in MVS is to estimate correspondences across views, which

is generally attacked by optimizing a photo-consistency

function measuring the color similarity of the slanted local

patches from different viewpoints. The local patch is gen-

erally assumed to be a 3D plane. To optimize this highly

nonlinear energy, PatchMatch-based methods [10, 28, 33]

have become popular and achieved many successes in MVS

benchmarks. However, applying these methods on hair

would instantly invalidate this assumption and thus cannot

achieve strand-accuracy.

Hair Capture from Dense Multi-view Images A series

of pioneered work in hair capture from multi-view im-

ages estimate a dense 2D/3D vector field from input im-

ages and combine it with other 3D surface constraints, e.g.,

from structure light or visual hull [30, 31, 36]. To im-

prove the hair capture quality, different sensor modalities

have also been investigated, e.g., using depth-of-focus tech-

niques [18], an RGB-D sensor [17] or thermal imaging [14].

Recently, with the success of MVS techniques, the

epipolar constraints are explicitly investigated for recon-

structing hair. Luo et al. [25, 27] presented capture meth-

ods based on the orientation fields detected from captured

images to better reconstruct the geometric details of hair.

Luo et al. [26] and Hu et al. [15] developed a progressive

method to steadily fit hair structures, i.e., ribbons, wisps,

and strands, to the point cloud data. As the point cloud is

reconstructed from a traditional MVS, these methods still

suffer from the plane assumption. Free of the plane as-

sumption, Beeler et al. [4] develop a coupled reconstruction

method to capture sparse facial hair by 2D/3D hair grow-

ing. However, due to the complex occlusions between hair

strands, this method cannot be applied to the dense hair.

Hair Capture from Limited Views Another direction in

hair capture is with data-driven methods, especially with

limited input views or even with a single view. With a single

input image and a few user strokes, Hu et al. [16] retrieved

closest hair examples from the database and combined them

to match the input hairstyle. Chai et al. have proposed a se-

ries of works on single-view hair modeling and manipula-

tion [5, 6, 7, 8], pushing towards high-quality hair modeling

without any user interactions. The quality of captured hair

can be improved by having four views of input images [40].

A recent trend is to employ deep learning to automatically

capture the hair strands from a single image [41]. Although

these approaches achieved plausible results, the estimated

hair geometry is not metrically accurate.

3D Line/Curve Reconstruction The work in reconstruct-

ing 3D line or curve primitives is also related to our method.

Structure from motion with line primitives has been pro-

posed by Bartoli et al. [1]. Stereo matching with line seg-

ments has been investigated to reconstruct the line struc-

tures of architectures [2, 11, 23, 24, 29, 34]. Line-based rep-

resentation has also been applied to visual SLAM [39, 42].

These methods, however, cannot be applied to hair due to

the high curvature and dense occlusion of hair strands.

3. Overview

Figure 2 shows an overview of our method. Our method

is three-fold: line-based PatchMatch multi-view stereo (LP-

MVS) (Section 4), strand reconstruction from point cloud

(Section 5) and multi-view hair growing (Section 6). LP-

MVS takes captured images and 2D orientation fields as in-

put and yields a 3D point cloud {P}, of which each point

represents a line segment. We represent a line segment P
with its 3D position and 3D direction {Ppos, Pdir}. The

strand reconstruction takes the point cloud {P} as input and

produces strand segments {S}. We then grow these strand

segments into long strands that best match the captured im-

ages and 2D orientation fields. We describe each stage next.
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Figure 3. (a) Traditional MVS with a plane assumption. (b) LP-

MVS with a line assumption. (c) One of the captured images. (d)

Point cloud from COLMAP [33] and our LPMVS.

4. Line-based PatchMatch MVS

Previous MVS assumes a 3D local plane is projected to

a pixel on a reference view and tries to find the position

and the normal of that plane using intensity/color corre-

lation between the reference view and neighboring views

(Figure 3a). Analogous to this, our LPMVS assumes a 3D

line segment is projected to a pixel and tries to find the po-

sition and the 3D direction of the line (Figure 3b).

The overall pipeline of our LPMVS is shown in Al-

gorithm 1. It largely follows that of the PatchMatch

MVS [10, 33]. Different from traditional MVS, however,

the output of LPMVS is a 3D line map. Each pixel in the

3D line map represents the 3D position (i.e., depth) and the

3D direction of a line. Our contribution in LPMVS is a new

cost function which is specifically designed for hair geom-

etry.

Figures 3c and 3d demonstrate the difference of recon-

structed point clouds respectively from traditional MVS

and our proposed LPMVS. While the output point cloud

of MVS [33] exhibits a planar surface shape that follows

the plane assumption of MVS, our LPMVS can recover the

fine-grained strands of hair geometry, which lays the foun-

dation for strand-accurate hair reconstruction.

4.1. Perview 3D Line Estimation

Input data The inputs to our LPMVS are calibrated im-

ages from multiple views with estimated 2D orientation

fields for each image. Here we only use grayscale images

and do not use color information. However, incorporating

color information should be straightforward. We first gener-

ate the 2D orientation fields following previous work [30].

The Gabor filter is used for the convolution kernel and the

resolution of kernel rotation is set to one degree, and thus

we get 180 responses for each pixel. The variance of the

responses are computed following Paris et al. [30]. We use

the inverse of squared variance (conf = 1/var2) as a con-

fidence measure of the 2D orientation fields.

Algorithm 1 Line-based PatchMatch MVS

Input: multi-view images and 2D orientation fields

Output: 3D line maps

1: for each view do

2: set reference and neighboring views

3: randomly initialize a 3D line map

4: for iteration i = 1 to Niter do

5: update the 3D line map via spatial propagation

6: refine the 3D line map via random perturbation

7: end for

8: end for

Cost Function for LPMVS Given a 2D pixel position p
in a reference view, LPMVS tries to find a corresponding

3D line Lp using its Nnei number of neighboring views. A

3D line Lp is parameterized by the depth value at p and its

3D direction; thus it has three degree-of-freedom. The cost

function m (p,Lp) defines the loss when the pixel p corre-

sponds to the 3D line Lp. In detail, it consists of two terms,

geometric cost mg (p,Lp) and intensity cost mc (p,Lp):

m (p,Lp) = (1− α)mg (p,Lp) + αmc (p,Lp) . (1)

These two terms are weighted by α (α = 0.1).

2D Sample Points To compute these two energy terms,

we use 2D sample points on the reference view and its

neighboring views. Figure 4 illustrates the process of gener-

ating Sp,i, which is a set of 2D samples in i-th view (we al-

ways refer 0-th view as the reference view). We first project

Lp to the reference image and get the corresponding 2D

line lp,0. For 3D to 2D line projection, we use Plücker line

coordinates (Hartley and Zisserman [13], p.198). We then

sample κ number of points uniformly along lp,0, centered at

the p with radius rκ, obtaining κ 2D samples for the refer-

ence view Sp,0. Notice that rκ defines the distance between

the farthest sample and p (κ = 41 and rκ = 10 pixels).

Once we obtain Sp,0, we shoot rays from the reference

view’s origin towards each sample in Sp,0. We find inter-

section points with the 3D line Lp and re-project the points

into i-th view and get corresponding 2D samples Sp,i.

Geometric Cost The geometric cost mg (p,Lp) defines

the difference of the direction of the 3D line Lp and its cor-

responding 2D orientations detected from the input images:

mg (p,Lp) =

Nnei
∑

i=0

γigi (Sp,i, lp,i)
/

Nnei
∑

i=0

γi, (2)

where γi is the weight for i-th view. gi (Sp,i, lp,i) defines

angular difference between the detected orientation on the

2D samples Sp,i and the direction of 2D line lp,i:

gi (Sp,i, lp,i) =
∑

s∈Sp,i

cs · diff (θs, lp,i)
/

∑

s∈Sp,i

cs, (3)
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Figure 4. Sampling along the 2D lines in multiple views.

where cs is the confidence value of the 2D orientation field

at the sampled position s, θs is the 2D orientation value and

diff (θ, l) returns the angle difference between a 2D orien-

tation θ and the 2D direction of a line l. We use γ to weight

more on the reference view and equally for the neighboring

views, as otherwise, the matching may ignore the reference

view cost (γ0 = Nnei, γi 6=0 = 1).

Intensity Cost Intensity cost is defined as follows:

mc (p,Lp) =
1

Nnei

Nnei
∑

i=1

ci (Sp,i, Sp,0), (4)

where ci (Sp,i, Sp,0) is 1D normalized cross correlation

(NCC) between the intensity values of the two sample sets.

Random Initialization To start LPMVS, we randomly

initialize the 3D line map of the reference view. For each

pixel p, we generate Lp by assigning it a random depth

value and a random 3D unit vector for the line direction.

Spatial Propagation We use the Red-Black pattern to

propagate good estimations to their neighbors following

Galliani et al. [10]. Instead of propagating plane param-

eters, LPMVS propagates 3D line parameters. However,

replacing the line parameters is not as straightforward as re-

placing plane parameters since 3D lines do not intersect at

a unique point in general. To solve this, we first shoot a

ray from the camera center of the reference view through

the reference pixel. We then find a 3D point on the ray that

has the minimum distance to the 3D line of the neighbor-

ing pixel. A new line L is defined by that 3D point and the

line direction from the neighboring pixel. In this way, we

can guarantee the line hypothesis to test is always project-

ing to the reference pixel. With that, we check if the new

line parameters reduce current cost so that we replace the

line parameters with the new ones. We repeat this process

Niter times (Niter = 8).

Line Refinement After each spatial Red-Black propaga-

tion, we refine the 3D line map by providing random per-

turbations w.r.t depth and 3D direction. We follow Galliani

et al. [10] for the refinement process. If the new parameters

reduce the cost, we replace the old parameters with them.

4.2. 3D Line Filtering

We follow the traditional MVS pipeline [10]; we first

compute 3D line maps from all views and merge these line

maps into a point cloud. To check the consistency of the

estimated lines, we compare 3D position and 3D line di-

rection. For each pixel on the reference view, we project

corresponding 3D line position into neighboring views and

get 3D lines from the neighboring views. The estimation is

consistent with j-th neighbor view if the following criteria

are met:

‖pos (Lp)− pos (Lp,j)‖2 < τp,

angle (dir (Lp) , dir (Lp,j)) < τd.
(5)

We use τp = 1mm and τd = 10◦. We keep the recon-

structed point from the reference pixel if it is consistent with

at least two neighboring views. By running this filtering

for each viewpoint, we eventually obtain a point cloud with

each point P having its position Ppos and direction Pdir.

5. Strand Reconstruction from Point Cloud

Similar to previous MVS, after obtaining the point cloud

{P}, we need to fuse the noisy samples to a unique rep-

resentation, which are strands in our case. A single hair

strand is defined as a sequence of connected 3D points

S = {P0, . . . , PS}. Our hair strand reconstruction algo-

rithm is purely based on the captured data, i.e., the point

cloud. It has two stages, point cloud fusion and hair strand

generation, which we describe in detail in the followings.

5.1. 3D Line Fusion

There are several technical challenges in generating hair

strands from the point cloud. First, the point cloud is noisy

and has outliers. These come from imperfect calibration,

repeated strand patterns, specular reflection, occlusion, etc.

Second, hair strands have complex geometric topology, as

many strands are clustered and close to each other and are

often intertwined. To deal with this, we first perform 3D

fusion on the point cloud to shape the point cloud into thin

hair strands while being robust to noise and outliers.

Existing 3D point cloud fusion methods, such as mov-

ing least-squares (MLS) [22] which is used in previous hair

capture work [26, 15], are designed for surface geometry.

Since MLS removes high-frequency noises by fitting point

cloud into a 3D surface, it would destroy our line structure

if applied to our point cloud. Although Lee [21] has ex-

tended it for 3D curve reconstruction, it still cannot han-

dle closely located parallel curves or crossing curves which

are common in hair geometry. Therefore, to fuse our point

cloud while keeping the strand structure, we propose a novel

3D line fusion algorithm based on the mean-shift that effec-

tively generates thin 3D curves from our point cloud. Algo-

rithm 2 describes our mean-shift based line fusion method.

This process is performed for each point independently.
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Algorithm 2 3D Line Fusion with Mean-Shift

Input: unclean point cloud {P}, P = {Ppos, Pdir}
Output: fused point cloud {Q}, Q = {Qpos, Qdir}

1: for P ∈ {P} do

2: Qprev ← P

3: repeat

4: Qnext ← LOCALMEAN(Qprev) ⊲ mean-shift

5: d←
∥

∥Qnext
pos −Qprev

pos

∥

∥

2

6: Qprev ← Qnext

7: until d > τs
8: {Q} ← {Q} ∪Qnext

9: end for

Let P be a 3D point with its position and direction, i.e.,

P = {Ppos, Pdir}. We move the point P to its local mean

position and update the direction to its local mean direc-

tion. We repeat this moving process (or shifting) until the

distance of the movement is less than τs (τs = 0.002mm).

Finding the mean of multiple 3D lines in the Euclidean

space, however, does not have a general solution. Inspired

by the 4D compact representation of 3D lines [32], we pro-

pose an effective solution (Figure 5). From the point P , we

create a plane ΠP with the plane normal Pdir. We then treat

all the neighboring points of P as 3D lines and find the in-

tersection points {X} with plane ΠP . We use a kd-tree for

searching neighbors within a radius rnei = 2.0mm. The

average line P ∗ = {P ∗
pos, P

∗
dir} is calculated as follows:

P∗pos =

M
∑

i=0

wiXi,pos

/

M
∑

i=0

wi, P∗
dir

=

M
∑

i=0

wiXi,dir

/

M
∑

i=0

wi, (6)

where X0 = P and Xi = {Xi,pos, Xi,dir} is the intersec-

tion point of the i-th neighboring point and ΠP We compute

the bilateral weight wi to consider both position and direc-

tion:

wi = exp

(

−

∥

∥X0,pos−Xi,pos

∥

∥

2

2

2σ2p
−

(

cos−1(X0,dir·Xi,dir)
)2

2σ2
d

)

. (7)

We set σp = 0.1mm and σd = π/6. Our mean-shift algo-

rithm is highly efficient for clustering thin 3D curves while

being robust to outliers and crossing strands. In addition,

the parameters have a clear link to the physical properties

of hair strands, i.e., strand thickness σp and curve angle σd.

Figure 5b shows the real example of before and after apply-

ing our fusion process to a point cloud.

5.2. Strand Generation

From the fused point cloud {P}, similar to the previ-

ous work [26], we use the forward Euler method for gen-

erating hair strands {S}. A strand segment S is defined

as a sequence of 3D points that belong to the same hair

strand S = {P0, . . . , PS}. First, we select a random seed

point P seed in the point cloud {P} and set it as current

point cloud plane-line intersection mean-shift final clustering

(a)

(b)

0.33mm

input 3D point cloud output 3D point cloud

Figure 5. (a) Mean-shift based 3D hair fusion algorithm. (b) Point

clouds before and after applying the fusion. The point cloud is a

part of that used in Figure 3d.

strand: Sc ← {P seed}. From P seed, we move towards

its line direction with step size s. From the moved posi-

tion, we search neighboring points within a radius τr. We

discard points with large angle difference τa and average

the positions and the directions of remaining neighboring

points. The averaged position and direction defines a new

current point P cur, and we add the point to the current

strand: Sc ← Sc ∪ {P
cur}. We repeat this procedure un-

til there is no neighboring point near the moved position.

We perform this process for both directions of the initial

seed point. Once we complete one iteration of the for-

ward Euler method step, i.e., having generated one strand

segment, we remove points from {P} that are within τr
to that strand. We then store current strand to the output

strand set: {S} ← {S} ∪ {Sc}. We repeat the forward Eu-

ler method until no remaining points exist in {P}. We set

s = τr = 0.1mm and τa = 30◦.

6. Multi-view Hair Growing

The output of the strand reconstruction is a set of short

strand segments, where the average length is usually less

than 10mm. Now we want to grow the short segments to

be long strands and reconstruct the hair on the outer surface,

which is missed in the LPMVS. Different from previous ap-

proaches [26, 15], our method revisits the multi-view con-

straint to makes sure the hair reconstructed from growing is

still metrically meaningful.

The growing algorithm is performed on each strand seg-

ment S and on each tip P tip of the segment. We start by

projecting the segment onto each view and find 2D growing

direction. Let θl be the 2D direction of the projected seg-

ment at the tip. We sample multiple 2D directions making

a 2D cone centered at θl with 5◦ of opening angle and 1◦ of

angular resolution. For each 2D direction, we make a 3×10

window. We compute the score for each directional window

by averaging angle difference between the 2D pixel orien-
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tation θo and the segment direction θl. When averaging, we

ignore the pixels with small confidence measure for the ori-

entation value. We also ignore the pixels with large angle

difference from θl ( > 5◦ ), as we prefer the growing direc-

tion not affected by crossing strands. Then we take the 2D

direction with the lowest score as the 2D growing direction.

We do not take the 2D growing direction if the number of

scored pixels is less than 10.

Let N ′ be the number of views with valid 2D growing

direction. Finding 3D growing direction is equivalent to

finding the intersection of N ′ 2D planes, each of which is

defined by the camera center of each view and its 2D grow-

ing direction. In practice, however, the planes do not inter-

sect to form a unique line due to occlusions. Therefore we

formulate this as a minimization problem with a multi-view

geometric line constraint. Let H be a N ′ × 3 matrix, where

i-th row represents the plane normal from i-th view, and g

be the 3D growing direction as a unit vector:

minimize
g

‖Hg‖
2

2
s.t. ‖g‖

2
= 1. (8)

To solve this equation, we can perform SVD on H =
UΣV

⊺, and select the column vector in V that corresponds

to the smallest Eigen value in Σ. This is however prone to

outliers. We thus apply iteratively re-weighted least squares

for robust optimization. In detail, we first solve Eq. (8) and

get residual r = Hg. We then re-weight each row in A with

1/r2 and solve Eq. (8). Two iterations are enough for effi-

cient outlier rejection. Notice that by solving Eq. (8), we

guarantee that the estimate 3D growing direction is mini-

mizing the same multi-view geometric cost in Eq. (1).

After we find the 3D growing direction g, we elongate

the strand by adding a new 3D point to the segment:Pnew =
P tip + sg · g, S ← S ∪ {Pnew}, where sg is a growing

step size. We set sg = 0.1mm which roughly corresponds

to a pixel width on captured images. We terminate grow-

ing hair strands if one of the following criteria is met: : a)

Less than Np (Np = 8) images return 2D growing direc-

tion; b) The new 3D point falls onto background area; c)

3D growing direction rapidly changes from previous grow-

ing (> 45◦). The background area is determined by simple

intensity thresholding on captured images.

7. Results

7.1. Quantitative Evaluation on Synthetic Data

As there is no way to scan the ground-truth hair geome-

try, we evaluate our method on the synthetic data, which is

rendered using Maya and V-Ray on the hair geometry from

Yuksel et al. [38]. We create two data sets for evaluation,

one with 280 images of curly hair and the other with 100

images of straight hair. See Figure 6 for example images.

We run our method on both data sets to reconstruct the hair

strands. The results are visualized in Figure 6.
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Figure 6. Evaluation using synthetic datasets. (Left) Rendered im-

ages using a ground-truth hair geometry. (Middle) Reconstructed

hair geometry. (Right) A horizontal slice of the ground-truth (yel-

low) and the reconstructed geometry (red).

τp (mm) τd (deg.) Precision (%) Recall (%) F-score

cu
rl

y 0.50 5.00 46.02 14.54 22.10

1.00 10.00 74.31 25.32 37.77

2.00 20.00 94.91 43.71 59.86
st

ra
ig

h
t 0.50 5.00 72.94 23.37 35.39

1.00 10.00 92.94 31.44 46.98

2.00 20.00 99.20 45.46 62.35

Table 1. Precision and recall of synthetic dataset curly hair and

straight hair with various threshold values. About 75% of recon-

structed points of curly hair and 90% of points of straight hair suf-

fice sub-millimeter accuracy with less than 10◦ error in tangential

directions.

Note that the large portion of hair strands of the ground

truth is in the inner part, which is heavily occluded from

captured images. For a fair evaluation, we assess our

method by comparing against only the outer stands of the

ground truth. We thus obtain new reference strands by re-

moving the inside strands in the ground truth that are far

(>10 mm) from the outer surface. The horizontal slices

in Figure 6 shows the ground truth strands and the recon-

structed ones. Qualitatively, we are able to reconstruct ac-

curately the outer surface of the ground truth.

With our reconstruction, we conduct quantitative analy-

sis on reconstructed point positions and directions to mea-

sure precision (a.k.a. accuracy) and recall (a.k.a. complete-

ness) similar to that in the traditional MVS methods [20].

Table 1 shows the quantitative evaluation results, where τp
and τd are thresholds for estimated position and direction

of strand points. We validate points if and only if they sat-

isfy both τp and τd. F-score is defined as harmonic mean of

precision and recall as in the MVS benchmark [20]. The re-

sults demonstrate high accuracy on both curly and straight

hair dataset using our method. For the curly hair, ∼75% of

reconstructed points have errors less than 1.0mm and 10◦.

For the straight hair, more than 90% of points show sub-

millimeter accuracy.
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Figure 7. Comparison between our method and previous work

(Luo et al. [26] and Hu et al. [15]). The output geometries from

previous work lose fine details of hair strands. In contrast, our

method recovers the original strands as is.

7.2. Comparison with Previous Work

Figure 7 shows a comparison between our method and

previous methods [26, 15] on their dataset, which takes 46

views of images as input. While the previous work can pro-

duce the overall shape of the hairstyle by synthesizing rib-

bons and wisps, the output geometry lacks fine details of

hair strands, like flying hair or random hair. In contrast, our

method captures hair strands as is from input images and

thus can recover details of the original strands (Figure 7

bottom). Note that due to the low coverage, some of the

occluded part is not reconstructed by our method, as we do

not perform plausible hair strand synthesis if they are not

multi-view constrainable, while previous methods do.

Comparison with Traditional MVS We compare our

method with one of the best previous MVS methods, i.e.,

COLMAP [33] (Figure 1). Our method captures much more

fine-grained strand structures than COLMAP, thanks to our

line-based processing pipeline.

7.3. Evaluation on Real Data

Capture System To demonstrate our method on the real

captured dataset, we employ a multi-camera system with

70 machine vision cameras with 4096×2668 resolution and

running at 30 fps. The cameras are located on a spherical

structure covering the half of the sphere. The distances be-

tween a subject and the cameras are about one meter so that

a single hair strand is captured with 1 – 2 pixels on images.

All cameras are calibrated both intrinsically and extrinsi-

cally with a calibration target [12]. 300 LEDs are evenly

distributed on the sphere to provide close-uniform lighting

to reduce the specularity.

Leave-one-out Evaluation To evaluate our reconstruc-

tion from an unseen viewpoint, we intentionally leave one

camera view out in the reconstruction, i.e., we use 69 cam-

era views for reconstructing the hair geometry. We then

project it to the unseen view for evaluation. The results

shown in Figure 8 demonstrate that our re-projection is

pixel accurate.

photograph

(novel view)

overlay

(novel view)

photograph

close-up 

overlay 

close-up 

Figure 8. Reconstructed hair geometry from our method is pro-

jected to a novel view photograph which is not included in the

reconstruction, demonstrating the pixel-accuracy of our method.

Qualitative Evaluation on Real Data To evaluate our

method, we have captured 6 real datasets to cover various

hairstyles including short/long, curly/straight, dark/bright

hair. Out of these, four are the real hair from actors and two

are wigs. Figure 9 shows the captured images and recon-

structed hair geometry. The close-up figures clearly demon-

strate the accuracy of our method, achieving strand-level

agreement between the captured images and reconstructed

hair. Notice that in Figure 9 we have converted hair strands

{S} into cylinder mesh just for visualization.

Dynamic Hair Our method runs per frame and thus can

be readily applied to a video sequence. Notice that we do

not enforce temporal coherency, and reconstruct hair frame

by frame. The reconstructed dynamic hair sequence demon-

strates that our reconstructed strands are temporally consis-

tent, further confirming the accuracy of our method. Please

refer to the supplemental video for the results.

Running Time Our method is implemented in C++ and

CUDA. We run experiments on a machine with a Intel(R)

Xeon(R) CPU and 8 NVIDIA Tesla V100 GPUs. It takes

∼40 seconds to estimate a 3D line map for a single view,

and we process multiview images in parallel using multiple

GPUs. Hair fusion takes ∼100 seconds to process 10 – 20

million points. Hair strand generation takes less than one

minute, and hair growing takes∼20 seconds. The total pro-

cessing time for a single frame with 70 views is ∼15 min-

utes.

8. Conclusion
In this paper, we propose the first method to achieve

strand-accurate hair reconstruction from a multi-view setup.

Our contributions include a line-based PatchMatch MVS, a

line-based strand fusion and reconstruction algorithm from

a point cloud, and a multi-view hair growing method. There

are several directions we want to look into as future work.

Comparing with many hair capture works, we do not con-

nect our strands to the scalp, which may be necessary for

hair simulation applications. We may improve the recon-

struction performance on the occluded part by incorporat-

ing the view optimization into our framework. Exploring

the temporal information in a dynamic sequence may im-

prove the reconstruction coverage, and getting a temporally

coherent hair reconstruction or hair tracking may look chal-

lenging but exciting for future directions.
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Figure 9. Results from real datasets. The top three rows show the real hair of actors and the bottom two rows show wigs. We capture

various hair styles including short/long, curly/straight, dark/bright hair in high accuracy.
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