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Progressive Acquisition of SVBRDF and Shape in Motion
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Figure 1: (a) We provide the first-ever method to simultaneously estimate the SVBRDF, shape, and motion of dynamic objects using a single
RGBD camera. (b)–(e) We obtain both diffuse and specular appearance with our novel joint optimization scheme, based on our hierarchical
data structure, which allows us to render captured scenes under novel view and light conditions. Refer to the supplemental video for more
results.

Abstract
To estimate appearance parameters, traditional SVBRDF acquisition methods require multiple input images to be captured with
various angles of light and camera, followed by a post-processing step. For this reason, subjects have been limited to static
scenes, or a multiview system is required to capture dynamic objects. In this paper, we propose a simultaneous acquisition
method of SVBRDF and shape allowing us to capture the material appearance of deformable objects in motion using a single
RGBD camera. To do so, we progressively integrate photometric samples of surfaces in motion in a volumetric data structure
with a deformation graph. Then, building upon recent advances of fusion-based methods, we estimate SVBRDF parameters in
motion. We make use of a conventional RGBD camera that consists of the color and infrared cameras with active infrared illu-
mination. The color camera is used for capturing diffuse properties, and the infrared camera-illumination module is employed
for estimating specular properties by means of active illumination. Our joint optimization yields complete material appearance
parameters. We demonstrate the effectiveness of our method with extensive evaluation on both synthetic and real data that
include various deformable objects of specular and diffuse appearance.

CCS Concepts
• Computing methodologies → Reflectance modeling;
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1. Introduction

Capturing material appearance has been a long-lasting research
problem in computer graphics. Many specialized hardware sys-
tems and software have been proposed to capture appearance pa-
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rameters, which can be used for photorealistic rendering of real-
world objects [DRS10]. Besides the cost of building a specialized
hardware setup, a long process of material acquisition is required.
It begins with capturing various photometric observation samples
with diverse angles of light and camera, resulting in hundreds of
images [GHP∗08, HLZ10, NLW∗16, TFG∗13, SSWK13, FHW∗11,
TAL∗07,LWS∗13]. The process is then followed by heavy compu-
tational processes that include calibration, registration, inverse ren-
dering, and so on, often resulting in computation taking numerous
hours.
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In addition to the system-building cost and the long hours of pro-
cessing, the entire input images with different angles of light and
camera should be captured in advance to be processed all together
for the optimization process of inverse rendering. This setup forces
the captured object to be static. If the object moves with motion or
is deformed into a different shape, the registration and geometric
relationship of input images are broken so that the entire input im-
ages should be recaptured from scratch to estimate appearance pa-
rameters. The state-of-the-art material appearance acquisition tech-
niques assume that a target object is both rigid and static. No de-
formation nor motion has been allowed in traditional acquisition
methods. To address the aforementioned drawbacks of the existing
solutions, we were motivated to capture the material appearance of
a dynamic object in motion like a person or any deformable object
such as cloth.

Acquiring the appearance of dynamic objects has been achieved
by developing a specialized multiview video system [TAL∗07,
FHW∗11, LWS∗13]. However, these systems are limited to cap-
turing subjects placed within the multiple light-camera stage. Also,
these systems are significantly more expensive than practical acqui-
sition methods. In contrast, we were motivated to devise a practi-
cal acquisition solution without requiring any specialized hardware
setup, such as a mechanical gantry with two robotic arms or a mul-
tiview camera-light stage. To this end, we decided to make use of
a conventional RGBD camera for our acquisition setup, following
the trend of state-of-the-art practical techniques [AWL15, RPG16,
HSL∗17, RRFG17, WZ15, WWZ16, PNS18, NLGK18].

The conventional RGBD camera that we used in this work is a
Kinect 2 sensor that consists of two camera modules: a color imag-
ing module is an ordinary color camera to capture red, green, and
blue colors of objects, and a time-of-flight (TOF) imaging module
is an infrared camera to capture the depth information with active
illumination of an infrared light module. We utilize the color cam-
era for capturing diffuse properties and use the pair of the infrared
camera and the infrared illumination module to estimate specular
properties.

In this work, we propose a progressive estimation of the
spatially-varying bidirectional reflectance distribution function
(SVBRDF) and the shape of a deformable object in motion using a
single RGBD camera. Since we are using a depth camera, we can
estimate the shape and motion vectors of the target object simulta-
neously while estimating appearance. We introduce a novel archi-
tecture to progressively integrate photometric observation samples
in motion in a volumetric structure through a deformation graph.
Existing works using a single camera can capture SVBRDFs of
static objects based on a hierarchical data structure that consists of
multiple clusters of similar appearance. To the best of our knowl-
edge, none of these methods can acquire SVBRDF and surface ge-
ometry with motion simultaneously. Our method estimates not only
geometry with motion but also SVBRDFs.

In addition, the traditional material acquisition meth-
ods [GHP∗08, HLZ10, NLW∗16, TFG∗13, SSWK13, FHW∗11,
TAL∗07, LWS∗13] require several hours to capture input im-
ages of rigid objects. Our novel inverse rendering framework
allows us to estimate SVBRDF parameters and shape infor-
mation progressively in interactive time since we build our

framework by combining the recent advances of fusion-based
methods [NFS15, IZN∗16, GXY∗17] and the practical inverse
rendering technique that captures SVBRDF with active illumina-
tion [NLGK18,WZ15]. Our progressive acquisition approach does
not need to wait for several hours to capture input images. From
an application perspective, it does not force the target object to
be static until all of the input images are captured. Our method
can progressively update both appearance and shape parameters
simultaneously. Processing each frame takes less than a half second
with a single GPU to estimate every parameter from photometric
samples accumulated through motion vectors.

In summary, our method is the first to bridge the gap between
SVBRDF acquisition of rigid objects and fusion-based dynamic
scanning of diffuse colors, allowing for simultaneous acquisition
of SVBRDF and shape in motion. Our main contributions are sum-
marized as follows:
• an architecture to accumulate photometric samples of a dynamic

object in a volumetric structure through a deformation graph of
motion,

• a joint optimization framework that can estimate SVBRDF,
shape, and motion simultaneously, and

• a progressive appearance computation framework for inverse
rendering.

2. Related Work

Appearance Acquisition of Static Objects Traditionally, mate-
rial appearance of static objects has been effectively acquired with
specialized hardware systems that consist of multiple lights or
cameras [GHP∗08,HLZ10,TFG∗13,SSWK13,GCHS10,NLW∗16,
RRFG17, BJTK18]. However, the building cost of such systems
is too high to make the acquisition process not available for ca-
sual users to have access to this acquisition process. To resolve
this issue, practical methods using a single camera have been
introduced [AWL15, RPG16, HSL∗17, RRFG17, WZ15, WWZ16,
SWK19, PNS18, NLGK18]. These methods can capture material
appearance by inferring diffuse and specular appearance param-
eters from multiple observations with different view/light angles.
While being effective for appearance and shape estimation, these
methods are limited to capturing static objects, meaning objects
without any motion. In contrast, we extend the target objects of ap-
pearance acquisition to dynamic objects through a joint estimation
of appearance, shape, and motion.

Multi-Camera Acquisition of Dynamic Objects To capture the
geometry and appearance of dynamic objects, various specialized
multi-camera systems have been proposed. Most previous sys-
tems only target diffuse appearance, neglecting specular appear-
ance [WVT12, DKD∗16, DDF∗17, XSH∗19]. There have been few
attempts to estimate the complete appearance of diffuse and spec-
ular components simultaneously [FHW∗11, TAL∗07, LWS∗13].
However, these multiview methods require very expensive acquisi-
tion systems with multiple cameras and lights. They are also offline
methods with high computational costs. In contrast, our method
progressively estimates diffuse/specular parameters, geometry, and
motion in an online manner using a single RGBD camera, which
makes them more practical.
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Figure 2: For each frame, our method takes inputs of RGB, IR, and depth images from a conventional RGBD sensor (Kinect 2), in addition
to the static environment map (only captured once at the calibration stage). (a) We first estimate motion fields and scene geometry with
consideration of SVBRDF. (b) Specular parameters are then estimated by exploiting the hierarchical data structure. (c) Given the specular
estimates, residual observation is fitted to the diffuse component, resulting in the diffuse albedo estimates. This framework runs in an online
manner, producing geometry, motion, and SVBRDF per frame as output.

Single-Camera Acquisition of Dynamic Objects While esti-
mating the shape and motion of dynamic objects from a sin-
gle camera has been extensively studied, estimating appearance
simultaneously is known to be challenging [NFS15, SBCI17,
LZG18,YGX∗17,YZG∗18,ZYL∗18,YGX∗17,YZG∗18,ZYL∗18,
YZZ∗19]. Only a few studies have been attempted to capture dif-
fuse components either in diffuse albedo [GXY∗17] or shaded dif-
fuse colors [DDF∗17, IZN∗16, SBI18]. In addition, there are prac-
tical acquisition methods that allows users to capture appearance in
a simple setup. Lin et al. [LPG19] estimate appearance parameters
by simply capturing HDR images of an object and a light probe.
Dong et al. [DCP∗14] capture SVBRDFs with known geometry
from an input video with motion. The main technical challenge of
simultaneously estimating specular appearance is that the number
of light/view samples in each frame is not sufficient for appearance
estimation. In order to overcome this, we utilize the active infrared
illumination in the TOF camera for estimating specular parameters
and integrate photometric samples into a hierarchical data structure.
This enables us to reconstruct all appearance parameters, geometry,
and motion of dynamic objects simultaneously.

3. Overview

Our method progressively estimates SVBRDF, geometry, and mo-
tion of a deformable object in a frame-by-frame manner. Based
on the traditional fusion framework [NFS15, GXY∗17], using an
RGBD camera, our method accumulates photometric samples of
the target object in our hierarchical data structure. The data struc-
ture allows us to estimate the full appearance of the object using a
small number of frames. Using the estimated appearance parame-
ters of the object, our algorithm progressively updates the appear-
ance information more accurately over time through the object’s
motion vectors. Figure 2 describes the overview of our method.

4. Acquisition Setup

In order to make our acquisition system practical, we make use
of two off-the-shelf imaging devices: a conventional RGBD cam-
era (Kinect 2) and a 360-degree camera (Ricoh Theta). The RGBD
camera is the main device to capture SVBRDF and shape in mo-
tion, and the spherical camera is used to capture the environment
illumination of the scene.

We chose the RGBD camera because the camera consists of the
color and infrared cameras with active infrared illumination. First,

iC

oI

iI

pC

pD

n

n

IR emitter

RGB camera

oC

IR camera Visible light

(a) Light transport diagram (b) RGB image (c) IR image

Figure 3: (a) Environmental scene illumination in visible RGB
channels is reflected at object surfaces and captured by the color
camera on the RGBD sensor. Estimating the specular component
from the RGB image (b) is challenging due to lack of the view/light
direction information. In contrast, the point IR illumination of the
depth camera enables effective reconstruction of specular appear-
ance from the IR image (c).

the color camera can be used for capturing diffuse color proper-
ties under the scene ambient illumination. Second, unlike the pre-
vious generation of RGBD cameras (Kinect 1 or PrimeSense), the
second generation of the Kinect sensor includes the TOF camera
module to estimate depth. The camera API allows us to access to
raw infrared image data, time-modulated phase images under ac-
tive infrared (IR) illumination, without having spatial modulation
artifacts shown in the previous generation. The clear infrared image
data under the known active illumination can be utilized to estimate
view-light-dependent reflectance property, i.e., specular albedo and
surface roughness. Since the angle between active infrared illumi-
nation and infrared TOF sensor in the RGB-D camera is approx-
imately 5 degrees at a distance of around 1 m, this could be suffi-
ciently wide to capture most SVBRDF except the Fresnel effect, as
discussed in [NJR15, NLGK18].

Figure 1(a) presents our acquisition setup. Figure 3 depicts light
transport in our imaging setup. First, to estimate the incident il-
lumination of the scene, we capture an environment map using a
360-degree camera. Second, for each frame, an RGB color frame
is captured by the color camera module in Kinect 2 under the am-
bient scene illumination. An infrared frame is captured by the TOF
camera module under active illumination of the TOF camera mod-
ule in the RGBD camera. We use both color and infrared frames in
the video stream to estimate the diffuse and specular parameters of
SVBRDF.

5. Capturing SVBRDF and Shape in Motion

To capture SVBRDF on a non-rigid object using a single RGBD
camera, we introduce a two-step framework of dynamic inverse
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Symbol Description

Im
ag

e
t Frame number
u Image pixel
P Pixel domain
Pt
D ,Pt
C Set of visible pixels at the depth camera space and the color camera space at t

ũD ,ũC Corresponding pixel of a rendered image pixel u in the depth and the color camera space
ũxD Corresponding depth pixel of a voxel x in the depth camera space
Dt , Ct , It Depth, color, and IR image at the frame t
Γ,Y Chromacity and luminance of the color image
Ṽt
D, Ñ

t
D Vertex map and normal map of the warped mesh at the depth camera space at t

Ṽt
C , Ñ

t
C Vertex map and normal map of the warped mesh at the color camera space at t

Vt
D,N

t
D Vertex map and normal map of the depth image at t

Ot
C View direction of Ṽt

C to the color camera at t

Tr
an

sf
or

m
at

io
n

K, D, C Canonical, depth (IR) and color camera space
P Perspective projection
Ti Deformation graph transformation matrix at the node i
KD , KC Depth (IR) camera, Color camera intrinsic matrix
Tt
K→D Canonical space to depth camera space transformation matrix at t

Tt
D→K Depth camera space to canonical space transformation matrix at t

Tt
K→C Canonical space to color camera space transformation matrix at t

Tt
D→C Depth camera space to color camera space transformation matrix at t

G
eo

m
et

ry

pt
K,p̃t
K, nt

K, ñt
K Point in the canonical space and its warped point and its normal at t

x, xK Voxel and its canonical position
x̃t
D , x̃t
C , ñt
D ,ñt
C Position of a voxel x at the depth camera and the color camera space and its normal at t

T TSDF structure
dT ,ωT Signed distance value and its weight
T t
D , T t

C Set of visible voxel at the depth space and the color space at t
VK, ṼK Canonical frame and warped mesh

M
ot

io
n G Deformation graph

Wt Motion field at frame t
qi, σi, wi Position, radius, and the weight of the ith deformation graph node
Φ Kernel funcion

Pa
ra

m
et

er
s λ Regularize paramter

κ IR emmiter illumination
γC ,γI Gamma value of the color and the ir camera
vt

x,ωt
x Half angle buffer value and its weight of a voxel x at t

vt
m,ωt

m Half angle buffer value and its weight of a cluster m at t

R
efl

ec
ta

nc
e

A Appearance of the canonical space model
ρd , ρs,α Diffuse albedo, specular albedo, and specular roughness
õt
D ,õt
C View direction of x̃t

D to the depth camera at t and x̃t
C to the color camera at t

ĩtI,D Light direction of x̃t
D to the IR emitter at t

θi,θo,θh Zenith angle between the normal plane and the light, view and half vector direction
fr, fd , fs Reflectance, diffuse reflectance, and specular reflectance function
Hk, lk Spherical harmonics basis function and coefficient
B, S Diffuse and specular reflection
M Cluster

Table 1: Symbols and notations used in the paper.
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rendering. First, we calculate motion fields by comparing both the
appearance and geometry of the current frame with those prop-
erties of the static model continuously accumulated from previ-
ous frames. Second, using the estimated motion fields, we up-
date three properties sequentially in each frame: geometry, specu-
lar reflectance parameters, and diffuse albedo, sequentially in each
frame. Refined geometry is used for estimating the parameters of
specular albedo and surface roughness from photometric samples
under active infrared illumination of the TOF camera. We clus-
ter these parameters in the deformation graph structure to estimate
SVBRDFs per cluster. Our SVBRDF acquisition progressively cap-
tures diffuse albedo, specular coefficient, specular roughness, ge-
ometry, and motion frame by frame under visible environment illu-
mination.

5.1. Background

5.1.1. Voxel Grid and SVBRDF Model

Voxel Grid We make use of a truncated signed distance function
(TSDF) volume T [CL96] to store the estimated appearance and
shape information. We reconstruct actual geometry and appearance
properties in the 3D voxel grid of TSDF, which is a set of voxel
x∈N3 that consists of two sets of properties: T ={V,A}. First, ge-
ometry V={[dT ,ωT ]}t at frame t is defined as a signed distance
value dT and its weight ωT . Second, appearance A={[ρd ,ρs,α]}t
is a set of diffuse albedo ρd , specular albedo ρs and roughness pa-
rameter α. Since appearance parameters are surface properties, we
only accumulate the appearance parameters to the voxels near to
surface: |dT |< 0.5τ, where τ is the truncate value.

Reflectance We formulate appearance as SVBRDF, where the re-
flectance function fr represents the isotropic Ward model [War92]
at vertex point p in the voxel grid. The diffuse term fd represents
individual diffuse albedo ρd per point, and the specular term fs
shares specular albedo (a.k.a. specular coefficient) ρs and rough-
ness parameter α per clusterM as follows:

fr (i,o;ρd ,ρs,α,n,p) = fd (ρd ,p)+ fs (i,o;ρs,α,n,p) ,

=
ρd
π

+
ρs

4πα2
√

cosθi cosθo
e−(tan2(θh)/α

2),
(1)

where i and o are the incident light vector and the view vector,
h = (i+o)/||i+ o|| is the half-angle vector, θi, θo and θh are an
angle between the normal n and each vector i, o and h, respectively,
at point p.

Rendering With an objective of per-frame inverse rendering, we
capture an HDR environment map as scene illumination over solid
angle Ω as input. Suppose we have incident light L(−i;p) over an-
gle Ω. Using the rendering equation [Kaj86], we calculate reflected
light L(o;p) as

L(o;n,p) =
∫

Ω

L(−i;p) fr (i,o;ρd ,ρs,α,n,p)(n · i)di

≈ B(ρd ,n,p)+S (o;ρs,α,n,p) .
(2)

First, for computational efficiency, we approximate diffuse re-
flection as spherical harmonics of radiosity [WZN∗14, RH01]
from given normals, assuming fixed environment illumination:

B(ρd ,n,p)=ρd ∑
8
k=0 lkHk (n), where lk are the nine spherical har-

monics coefficients of incident environment illumination (up to
the second order) over Ω, and the spherical harmonics basis func-
tions Hk (n) take normals n as input to calculate diffuse shad-
ing in the global space. Second, we calculate specular reflection
S (o;ρs,α,n,p)=

∫
Ω

L(−i,p) fs (i,o;ρs,α,n,p)(n · i)di by integrat-
ing the spherical illumination map using uniform sampling of the
upper hemisphere in the normal space.

5.1.2. Capturing Shape

Simultaneously estimating SVBRDF, geometry, and motion is a
chicken-and-egg problem because they are strongly correlated.
Once the first-frame observation of the RGBD camera is stored in
the canonical space, we begin with estimating the per-frame motion
field by formulating the following optimization problems. Before
explaining SVBRDF estimation in motion, we briefly explain how
to estimate the motion field to accumulate dynamic photometric
samples in our hierarchical data structure. This motion part is inher-
ited from the traditional fusion-based framework [NFS15]. Refer to
Table 1 for symbols and notations used in this paper.

Global Registration To improve robustness, we first estimate
global transformation that registers the input frame of a depth cam-
era to the voxel grid in each frame, which is formulated as a 6-DOF
rigid body transformation (RBT) matrix Tt

D→K ∈SE(3) such that
point pt

D in the depth camera space D at frame t is transferred into
the canonical space of voxel grid K via pt

K=Tt
D→Kpt

D . The ma-
trix can be optimized by solving the iterative closest point (ICP)
method [RL01].

Capturing Shape via Motion Following the previous work of
DynamicFusion [NFS15], we first estimate the local non-rigid mo-
tion fields per frame and update the shape of the deformable ob-
jects. We define a motion field W from the canonical space K
to the current warped frame t as Wt={[qi,σi,Ti]}t , where qi is
a position of ith node from the total N number of nodes (i ∈
{1, ...,n}) in the deformation graph G, σi ∈R+ is a radius pa-
rameter for the distance weight wi between node qi and point
pK in the canonical space: wi (pK,σi)=exp(−||pK−qi||2/(2σ

2
i )),

and Ti ∈SE(3) is a 6-DOF RBT of the ith node. The motion
field Wt at a point pK is defined by dual-quaternion blend-
ing [KCvO07] using the k-nearest neighbor nodes with its con-
vex weights. The motion field Wt warps a point pK and a nor-
mal n(pK) in the canonical space by

[
p̃ᵀ
K,1

]ᵀ
=Wt (pK)

[
pᵀ
K,1

]ᵀ
and [ñ(pK)ᵀ,0]

ᵀ=Wt (pK) [n(pK)ᵀ,0]
ᵀ. Given depth image Dt

and the estimated warp motion field, we obtain a weighted aver-
age of the projective TSDF values for every voxel x to reconstruct
the shape. Finally, we conduct the marching cube algorithm on the
TSDF volume to create a polygonal mesh model per frame and
update deformation graph. For more detail, refer to the previous
work [NFS15] and the supplemental material.

5.2. Estimating Motion with SVBRDF

State-of-the-art fusion methods [ZNI∗14, DNZ∗17, NFS15,
GXY∗17] evaluate only diffuse color and geometry differences
to estimate motion field. In contrast, we can estimate the current
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motion field Wt by minimizing the following energy function
making use of given geometry and SVBRDF:

Emotion
(
Wt)= Edepth +λdregEdreg +λpcolorEpcolor, (3)

where Edepth and Edreg are the data term and its regularizer for
geometry, Epcolor is our novel data term for SVBRDF. λdreg and
λpcolor are the corresponding weights.

Geometric Energy Our geometric energy terms Edepth and Edreg
are similar to those terms used in [NFS15]. Edepth optimizes the
motion parameter by minimizing the plane-normal distance be-
tween the warped mesh from the previous frame and its corre-
spondence point in the current depth image. To enforce the local
smoothness of motion and prevent overfitting, Edreg minimizes the
distance when the node is warped by its own motion parameter and
when it is warped by the motion of the neighboring nodes. Refer
to [NFS15] or the supplemental document for more details.

Color Energy Assuming that SVBRDF of the captured object
does not change over time, our novel motion estimation term Epcolor
considers object appearance to enforce the photometric consistency
of object surfaces at the ith node in the camera space C as follows:

Epcolor(W t) = ∑
u∈Pt

C

∥∥Ct (ũC)−Lt (Õt
C (u) ; Ñt

C (u) , Ṽ
t
C (u)

)∥∥2
2, (4)

where Pt
C is a set of visible pixels u obtained by rendering

the warped static model to the current color camera space Ct ,
Ṽt
C :N2→R3 is the vertex map of the warped mesh Ṽt

K trans-
formed by Tt

K→C from the canonical space to the current color
camera space, Õt

C is the view direction of Ṽt
C to the color cam-

era, Ñt
C :N2→R3 is the normal map of Ṽt

K transformed by Tt
K→C ,

ũC=P(KCṼt
C (u)) is the pixel in the color image Ct that corre-

sponds to u, KC is the intrinsic matrix of the color camera, and
the reflected light Lt=Bt+St is rendered by Equation (2). Since, un-
estimated specular components degrade the estimate quality of the
estimating motion, this term helps to correctly estimate the pho-
tometric difference between a color image and our reconstructed
objects. Refer to Figure 9 to see how geometric accuracy has been
improved by accounting for SVBRDF in estimating motion.

Motion Optimization In order to solve Equation (3), we refor-
mulate it as the sum of squared residuals f so that we can define a
new vector field F to find out the vector of motion parameters X ,
satisfying: E(X ) = ∑ f (X )2 = ||F(X )||2. Then, the optimization
formulation can be solved by the Gauss-Newton method. The re-
formulated optimization needs the linearization of three terms of
motion, diffuse reflectance, and specular reflectance.

For the first two approximation steps of motion and diffuse
color, we follow an existing method of using twist representa-
tion [MSZ94] that represents each node’s motion parameters X
(3D for rotation and 3D for translation), and converting it to SE(3)
using an exponential map. We also linearize the diffuse color im-
age using the first-order Taylor approximation [WVT12, NFS15,
GXY∗17].

However, linearizing our novel SVBRDF term is not trivial. Dif-
ferent from view-invariant diffuse reflection Bt at frame t, specular
reflection St at vertex Ṽt

C depends on the outgoing angle variable
Õt
C with appearance parameters (ρs,α,n) and also is formulated by

the integration of the incident light (Equations (1) and (2)). There-
fore, the computational cost for the direct minimization of Equa-
tion (4) with the SVBRDF term is highly expensive. Instead, we
first render specular reflection St with given environment illumina-
tion in the current color camera space Ct and then substitute St from
captured color image Ct for comparison with pure radiosity Bt ,
based on Equation (2). This solution increases color optimization
very efficiently and enabling us to consider SVBRDF when esti-
mating motion fields.

Finally, in each Gauss-Newton iteration, we find parameters of
∆X by solving a linear least-squares problem [DNZ∗17]:

∆X̂ = argmin∆X

∥∥∥F(X ( j−1))+JF(X ( j−1)) ·∆X
∥∥∥2

2
. (5)

To obtain ∆X̂ , we set the partial derivatives of the above
equation w.r.t. ∆X as zero to solve the following equa-
tion: JᵀF(X

( j−1))JF(X ( j−1)) ·∆X̂ =−JᵀF(X
( j−1))F(X ( j−1)). We

solve this problem with preconditioned conjugate gradient method
(Section 6). Finally, we update motion field as follows: Tt

i = e∆X̂ ·
Tt−1

i . Figure 4 shows an example of the estimated motion field us-
ing our SVBRDF-aware motion optimization.

(a) Frame #720 (b) Frame #740 (c) Motion fields

Figure 4: (a)&(b) Input photographs of 720-th and 740-th frames.
(c) Our estimated motion fields showing the deformation of the
cloth at the 740-th frame.

5.3. Capturing SVBRDF in Motion

The state-of-the-art methods for estimating material appearance
have focused on SVBRDF of static objects [PNS18, NLGK18] or
only diffuse albedo of dynamic objects [GXY∗17]. Since we es-
timate per-vertex motion and shape, we then estimate complete
SVBRDF parameters per vertex in a progressive way through our
novel optimization method.

5.3.1. Specular Parameters

There are two main technical challenges for estimating specular
parameters: First, specular reflectance depends on both light and
view directions, whereas diffuse reflectance is a constant. In partic-
ular, specular parameter estimation requires a set of multiple pho-
tometric samples with known light and view directions before op-
timization. Second, per-frame progressive optimization of specular
parameters is therefore supposed to suffer from a lack of samples
more than the traditional offline methods. The appearance parame-
ters of the same materials need to be shared with spatial and tem-
poral coherence for efficient sampling. We handle these challenges
as follows.

Point-Light Illumination for Specular Reflection As mentioned
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earlier, in an RGBD camera, there is a TOF camera module that
consists of an infrared light and an infrared camera to measure
depth (Figure 3). We utilize the pair of the infrared illumination
and the infrared camera module to capture photometric samples to
estimate specular parameters.

First, we have geometrically calibrated these two devices before-
hand to obtain the light and view vectors (iI , oI ). The relative
position and orientation of both iI and oI w.r.t. the surface ge-
ometry are obtained using the estimated motion field. Given the
known light and view vectors in the normal space, we can remove
the integral over hemisphere Ω in Equation (2) using the point light
assumption:

S (iI ,oI ;ρs,α,n,p) = LiI (p) fs (iI ,oI ;ρs,α,n,p)(n · iI) . (6)

It allows us to solve the inverse problem efficiently per frame, as-
suming that the surface roughness of microfacets is consistent in
both visible and infrared illumination, following [WZ15, PNS18].

Hierarchical Data Structure Different from capturing diffuse
albedo, estimating specular parameters requires dense observation
samples, and thus existing SVBRDF methods [TAL∗07, LWS∗13,
WZ15, PNS18] have used a hierarchical data structure to accumu-
late sparse samples of specular appearance per each cluster to be
used for inferring the specular parameters. In addition, existing dy-
namic fusion methods [NFS15, GXY∗17] make use of a hierarchi-
cal data structure to regularize motion vectors of moving objects.
In this work, to estimate the SVBRDF of objects in motion, we
combine these two data structures into a novel hierarchical data
structure that allows us to estimate motion vectors and appearance
parameters together. The structure consists of three main compo-
nents: surface clusters, deformation graphs, and a TSDF volume,
where diffuse albedo is estimated per voxel, and specular parame-
ters are estimated per cluster (a set of deformation graph nodes that
are associated with motion fields) by assuming that surfaces are
dichromatic, and that roughness is locally smooth [WZ15,PNS18].

Once these attributes are optimized per frame, they are interpo-
lated to each vertex in the static model. Our hierarchical structure
is beneficial in two aspects: First, we can efficiently estimate both
appearance and geometry in motion per frame, which requires ex-
pensive optimization, by working on the small number of clusters
compared to the number of voxel grids. Second, we can achieve
observations with various angles of θh to optimize SVBRDF pa-
rameters per frame by working on a large range of surfaces with
potentially different angles of θh. Figure 5 visualizes our hierarchi-
cal data structure that accumulate photometric samples.

Fine-to-Coarse Sample Accumulation We accumulate these
photometric samples in the hierarchical data structure of the half-
angle buffer based on spatiotemporally coherent clustering using
the motion fields. We first store the reflection observations of the in-
frared point light in the fine-grained TSDF voxel grid. To this end,
we first warp the positions of the canonical voxels xK into the cur-
rent depth camera frame via x̃t

D=Tt
K→DW

t (xK)xK. We then cal-
culate the perspective projection of x̃t

D to check visibility and cor-
respondence of ũxD=P

(
KD x̃t

D
)

with respect to camera pixels It .
Once we find out the corresponding camera intensity It (ũxD ), we
calculate the specular intensity v w.r.t. the half-angle vector an-
gle θh (a.k.a. the discrete normal distribution function (NDF)) by

TSDF Deformation graph Cluster Fitting
Half angle

N
D

F
va

lu
e

Observed
Fitted

Figure 5: We accumulate shape and SVBRDF parameters in a hi-
erarchical data structure. First, we store every observation from
the RGBD camera into the high-resolution TSDF structure. We
then transfer the observation into the deformation graph struc-
ture for efficient appearance estimation. Nodes are associated with
motion fields to yield the spatiotemporal coherence of appearance
estimates. Lastly, the deformation nodes are clustered, providing
enough samples for fitting BRDF parameters for each cluster.

normalizing the gamma-corrected intensity with shading 1/(n · iI)
and distance d2 at point x̃t

D as follows:

v =
d2 (x̃t

D
)

κ
·
(
It (ũxD )

)γI

ñt
D · ĩ

t
I,D

, (7)

where ñt
D is a normal at x̃t

D , ĩtI,D is incident IR illumination vector
at x̃t
D , γI is the infrared camera gamma, and κ is a normalization

constant. Both γI and κ are calibrated, following [PNS18]. We as-
sume that the infrared emitter and receiver are close enough that
both i and o are the same as h to simplify Equation (7) similar
to [WZ15]. Per-voxel specular reflectance, vt

x, of point x at current
frame t is updated in the half-angle buffer through weighted aver-
age in the static model:

vt
x (θh) =

v ·ω+ vt−1
x (θh) ·ωt−1

x (θh)

ω+ω
t−1
x (θh)

, (8)

where ω = Φbell (u) · ñt
D · õ

t
D , õt

D is camera view direction at x̃t
D ,

Φbell is the bell-shaped filter kernel to suppress extreme noise at
the edge of the image. We also update the corresponding weight as
follows: ω

t
x (θh) = ω+ω

t−1
x (θh). Since we estimate specular pa-

rameters in the hierarchical data structure, we lift the discrete NDF
values stored in the high-resolution TSDF structure to the defor-
mation graph’s nodes. Specifically, we assign the target deforma-
tion node to a TSDF voxel based on the diffuse albedo values of
the node and the voxel. We then cluster deformation graph nodes
qi with normalized diffuse albedo using the k-mean clustering al-
gorithm (k varies up to eight).

Specular Parameters Optimization For each cluster m∈Mt ,
we estimate infrared diffuse albedo ρdI by finding out the mini-

mum value of vt
m(θ̂h) such that

Φbox(vt
m(θh+1))

Φbox(vt
m(θh))

≥1+ ε, where Φbox

is the box filter kernel, and ε is a user-defined value (0 – 0.01). We
then estimate α̂(m) and initial ρ̂s(m) of each cluster m by minimiz-
ing the objective function:

minimize
α, ρs

π/3

∑
θh=0

(
ω
′ ∣∣vt

m (θh)−ρdI − fs (θh,α,ρs)
∣∣2), (9)

where ω
′=cos2(θh)max(ωmax,ω

t
z (θh)) when ωmax is a predefined
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clamp parameter and vt
z is the sums of vt

x that belong to the clus-
ter z. Here, ω indicates the level of confidence of observation. We
set ωmax to a certain level empirically to exclude the diffuse-like ob-
servation from the regression of the specular parameter. We solve
the optimization problem through the brute-force search with a tab-
ulated function fs (70 levels: 0 – 70 degrees) in Equation (1), pre-
computed with discrete α (66 levels: 0.05 – 0.7) and ρs (100 levels:
0.01 – 1.00). Note that the deformation graph’s nodes are associated
with the motion field, allowing for spatiotemporal coherence. Fig-
ure 6 shows the estimated clusters, accumulated observations for
each cluster, and our fitting results.

Specular Albedo Adjustment We utilize the active infrared illu-
mination and the infrared camera to estimate the specular parame-
ters: specular albedo ρ̂s and roughness α̂. However, the albedo of
the infrared wavelength is independent of that of the visible wave-
length. To estimate specular reflection captured by the RGB color
camera, we estimate the albedo scalar λI→C that adjusts the in-
frared albedo to the visible specular albedo, i.e., λI→C is then mul-
tiplied to the infrared specular albedo ρs, yielding visible albedo
ρ̂s. Note that the infrared roughness parameter α is independent of
albedo so that the same value is copied to the visible roughness α̂.
The albedo scalar λI→C (m) of each cluster m is estimated as:

λI→C (m) =

∑
x∈T t
C∩Mm

(
max

(
Y (Ct

(
ũxC
)
)−Y (Bt

C (x̃t
C)),0

))
∑

x∈T t
C∩Mm

St
C (ρ̂s,I (m) , α̂I (m) , x̃t

C)
, (10)

where T t
C is a set of visible surface voxels x warped to the cur-

rent Ct , Mm is a set of voxels which cluster to m, x̃t
C=TD→C x̃t

D
is a voxel transformed from the current depth camera space Dt to
the color camera space Ct , Bt

C
(
x̃t
C
)
= Bt
C
(
ρd(x̃t

C),n, x̃
t
C
)

is diffuse
shading rendering using the diffuse albedo of voxel at Ct , Y (·) is
a luminance function that converts a color to the luminance inten-
sity, Y (Ct)−Y (Bt) is the difference between the captured color and
rough diffuse albedo of voxels subject to Y (Ct) > Y (Bt), yield-
ing initial specular shading in the color camera, and St

C
(
x̃t
C
)
=

St
C
(
o; ρ̂s,I , α̂I ,n, x̃t

C
)

is specular shading rendered at Ct with the
IR specular parameters using Equation (2). In order to calculate the
diffuse shading image, we use the (t− 1) frame estimated diffuse
albedo. Our algorithm refines the diffuse albedo and the specular
albedo progressively over time.

Coarse-to-Fine Propagation of Parameters Before we render
the specular shading of each voxel St

C
(
x̃t
C
)
, we propagate the visi-

ble specular parameters from the deformation graphs to the resolu-
tion of TSDF. Each deformation-graph node takes the appearance
values from its associated cluster. Each TSDF voxel obtains the pa-
rameters from the deformation nodes based on the k-nearest neigh-
bors classified by diffuse albedo. Since every voxel x is associated
with four k-nearest neighbor nodes, we propagate per-cluster α̂(x)
and ρ̂s (x) to every voxel x by the minimum difference of albedos
in each voxel and the node with in the k-nearest neighbor.

5.3.2. Diffuse Albedo Estimation

Existing fusion-based methods that estimate appearance account
for diffuse reflection, assuming that surfaces have pure diffuse
albedo only. The traditional fusion-based methods can integrate av-
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Figure 6: We accumulate all the photometric samples from the fine
to the coarse levels: TSDF, deformation graph, and cluster. After
we estimate specular appearance per cluster, we propagate the es-
timated appearance from the coarse to the fine levels.

eraged photometric observations as diffuse albedos per voxel with-
out separating specular reflection from them [NFS15]. The state-
of-the-art method [GXY∗17] accounts for shading when calculat-
ing diffuse albedos by capturing the environment illumination addi-
tionally. However, these methods still cannot account for specular
reflection from diffuse albedo computation. In contrast, our method
separates specular reflection from the entire reflection, yielding
pure diffuse reflection.

5.3.3. SVBRDF Optimization

Given the motion field Wt , we estimate the surface properties of
SVBRDF At={[ρd ,ρs,α]}t : diffuse albedo, specular albedo, and
surface roughness per voxel x in the TSDF volume T by formulat-
ing the following energy function:

ESVBRDF
(
At)= Evcolor +λtregEtreg +λsregEsreg, (11)

where Evcolor is the per-voxel color data term, Etreg is the tempo-
ral regularizer, and Esreg is the spatial regularizer for the diffuse
SVBRDF parameters.

The color data term Evcolor enforces photometric consistency of
the SVBRDF parameters (on each voxel warped to the camera xt

C)
to make rendering with them satisfy given camera observation Ct :

Evcolor = ∑x∈T t
C

Φ
(∥∥ñt
C− õt

C
∥∥)∥∥Ct (ũxC

)
−Lt (x̃t

C
)∥∥2

2, (12)

where ũxC=P
(
KC x̃t

C
)

is a corresponding pixel of x̃t
C at the current

color image Ct , ñt
C and õt

C are normals and camera vectors at x̃t
C ,

respectively, and Φ is a robust kernel where Φ(x) = 1/(1+5x)3,
following [ZDI∗15]. Here, Lt (x̃t

C
)
= Lt (õt

C ; ñt
C , x̃

t
C
)

is the outgo-
ing radiance under visible environment illumination, which is the
sum of diffuse radiosity Bt and specular reflection St of the voxel
in the color camera space (Equation (2)).

Regularizer Etreg in Equation (11) suppresses the temporal over-
fit of diffuse albedo ρd toward specular reflection:

Etreg = ∑x∈T t
C∩T

t−1
C

∥∥∥ρ
t
d (x)−ρ

t−1
d (x)

∥∥∥2

2
, (13)

where T t−1
C is a set of visible surface voxels x at the previous color

camera frame Ct−1.

In addition to the color data term, we enforce local smoothness
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of diffuse albedo by formulating Esreg:

Esreg = ∑x∈T t
C
∑y∈N(x)∩T t

C
Φ
(∥∥Γ

(
ũxC
)
−Γ

(
ũyC
)∥∥)∥∥ρ

t
d (x)−ρ

t
d (y)

∥∥2
2 ,

(14)

where N (x) is a set of the neighboring voxels x, ũxC and ũyC are
pixels obtained by transforming voxels x and y to the current color
camera space Ct , respectively, Γ=Ct/Y (Ct) is the ratio of chro-
maticity to luminance Y of each pixel.

To implement this optimization progressively, we render visi-
ble specular reflection St with the specular parameters ρ̂s and α̂ at
voxel xt that we have estimated in Section 5.3.1, using iC and oC
under visible environment illumination (captured by a 360 camera).
We then subtract the estimated specular components from the cap-
tured image so that Equation (11) can be optimized only with re-
spect to the pure diffuse albedo. This can be solved with the precon-
ditioned conjugate gradient optimization since it becomes a least-
square problem.

6. Implementation Details

Radiometric Calibration We have conducted radiometric cali-
bration for the RGB camera module and the infrared TOF cam-
era module inside an RGBD device, Kinect 2 (Figure 3) in order to
quantify the sensor responses in the red, green, blue, and infrared
channels. First, we estimate the RGB irradiance of the illumination
(rn,gn,bn) by capturing the standard reflectance tile, Spectralon
(Labsphere SRM99) for white balancing with the gamma value of
γC = 2.2. Then, we calibrate the infrared camera parameters by
solving the following optimization [PNS18]:

min
κ, γ

∑
u∈Ps

(
I(u)−

(
κ ·ψ n(u) · i(u)

π ·d2 (u)

)γI
)2

, (15)

where Ps is a set of pixels u in the region where the spectralon
is captured, κ is the illumination intensity of the infrared emitter
in the Kinect 2 sensor, γI is the gamma exponent of the infrared
camera, I(u) is the infrared value at the pixel u, n(u) is the normal
of the pixel u, i(u) is the incident light direction of the pixel u, and
d(u) is the distance between the IR emitter and the pixel u. We have
estimated the values of κ and γI as 0.46 and 0.92 through nonlinear
optimization [BGN00]. Given the radiometric parameters rn,gn,bn,
κ, γC , and γI in the preprocessing of calibration, we linearize each
RGB and infrared images and normalize them with irradiance.

Preconditioned Conjugate Gradient for GPU We have imple-
mented a GPU-based data-parallel preconditioned conjugate gra-
dient (PCG) solver [WBS∗13]. The main computational bottle-
neck is the part of calculating matrix-vector multiplication. Fol-
lowing [ZNI∗14], we have made use of two sparse matrix-vector
multiplication kernels.

Environment Map Capture To estimate incident illumination
of scenes, we have captured scene environment maps as high-
dynamic-range (HDR) radiance maps using a 360 camera (Ri-
coh Theta) with multiple exposures. In this paper, we have used
monochromatic illumination maps by converting RGB radiance
maps to luminance maps for computational efficiency. We then rep-

resent the environment maps with spherical harmonics coefficients
for efficiently computing shading.

7. Results

We built our capture setup using a Kinect 2 RGBD camera that con-
sists of both an RGB and an infrared camera with an infrared il-
luminator in the TOF camera module (see Figures 1 and 3). Our
method is implemented in C++, where CUDA-based GPU accel-
eration is extensively used for parallel processing, along with the
OpenGL Shading Language for rendering. We set the resolution
of the TSDF volume as 512×512×512, and each TSDF voxel is
defined as a cube with a width of 2 mm. Each node in the deforma-
tion graph has a radius of 20 mm. For the ground-truth data, we use
1.5 mm voxel size and 15 mm deformation graph radius. The trun-
cation range for TSDF is five times wider than the voxel size. We
precompute a discrete table of the BRDF function for predefined
samples of parameters: The half-angle is sampled from 0 to 60 de-
grees with a step size of 1 degree. Then, the Ward BRDF model
is precomputed with the values of α and ρs from 0.05 to 0.70 and
0.01 to 1 both with 0.01 intervals, respectively. We tested our algo-
rithm on a desktop computer with an Intel Core i7-7700K 4.20 GHz
and a graphics card of NVIDIA Titan V (12 GB). Our entire algo-
rithm took 456 ms to process and render each frame. Our method
is designed to be online, progressively processing input frames. Ta-
ble 2 shows the detailed timestamps of our method taking 456 ms
to process each frame. We provide our experimental results and
comparison as follows.

Algorithm Processing time (ms)
Global registration 8
Motion estimation 224
TSDF integration 26
Specular estimation 89
Diffuse estimation 43
Marching cube 63
Etc. 2
Total 456

Table 2: Per-frame processing time of our method. Our method
takes 456 ms in total to process each frame inputs.

(a) GT depth (b) Noisy depth (c) GT IR (d) Noisy IR

Figure 7: Synthetic input example. (a) Ground-truth depth image
with normals. (b) Synthetic depth image with Gaussian noise. (c)
GT IR image. (d) Synthetic IR image with Gaussian noise.

Quantitative Evaluation We created a synthetic dataset with
known shape, SVBRDF, and motion of different objects using
OpenGL rendering. To make our synthetic dataset closer to the
real sensor input, we also added Gaussian noise to the ground-truth
(GT)depth images with N (0,0.0022) and the GT IR images with
N (0,10002), as shown in Figure 7.
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Figure 8: We have evaluated the reconstruction accuracy of geometry and appearance parameters, compared with the ground truth dataset
synthetically created with Gaussian noise. (a) Input RGB images (b) Our results of reconstructed 3D models at each frame, followed by (c)
Our results of surface normals, (d) motion vectors, (e) diffuse albedo, and (f) specular roughness.

(a) Reference (c) Our reconstruction (e) Error map (Ours) 0mm

10mm

(b) Guo et al. [GXY∗17] (d) Error map(Guo et al.)

Mean error: 5.92mm Mean error: 5.25mm

Figure 9: We compared the geometric accuracy of our method with a state-of-the-art method, Guo et al. [GXY∗17], implemented by our-
selves. We used the synthetic dataset that we created with Gaussian noise. Our method accurately reconstructs motion and geometry resulting
in a low geometric error of average 5.25 mm. (a) Reference ground truth geometry. (b) Result by Guo et al. (c) Our reconstructed geometry.
(d) Error map of Guo et al. compared with the GT geometry. (e) Error map of our results compared with the GT. Close-up boxes compares
our method with that of Guo et al.

0mm

8mm
Mean error
1.62mm

(a) Color (b) Rendering (c) Geometry (d) Difference

Figure 10: We evaluate the accuracy of the reconstructed geometry,
comparing the warped geometry with the depth map of the current
frame. (a) Input RGB image, (b) rendered result, (c) warped geom-
etry, and (d) a difference map between (c) and the current depth
map. The mean error of the depth values is just 1.62 mm.

Using the synthetic dataset created with Gaussian noise, we have
evaluated the accuracy of our reconstruction algorithm compared
with the ground truth. Figure 8 presents our reconstruction re-
sults compared with the ground-truth SVBRDF, shape, and mo-
tion. In order to quantitatively evaluate the reconstruction accuracy
of shape and motion together, we warp the estimated geometry to
the current camera frame with motion estimates for each frame.
The averaged error between the ground-truth shape and the recon-
structed shape with motion is very low at just 5.25 mm in the Haus-
dorff distance, as shown in Figure 9.

Moreover, we evaluate the accuracy of the estimated flow by our
method in the real scene. We compare the differences between the
actual depth map at #400 frame (of the Bag scene) and the warped
geometry of our reconstructed model in Figure 10. The average
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Figure 11: Our method faithfully reconstructs SVBRDF, geometry, and motion of real-world dynamic objects. (a) Input RGB frame (b) Our
results rendered with (c) reconstructed diffuse albedo, (d) specular roughness, and (e) surface normals. (f) Results rendered under novel
environment illumination. Note that we have multiplied the specular intensities by a factor of two for visualization purpose only. Refer to the
supplemental video for more results.
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Figure 12: Our method progressively estimates SVBRDF by accumulating observations. We evaluate the stableness of our SVBRDF recon-
struction for the real and synthetic dataset. (a) Real (top) and synthetic (bottom) color photographs and target clusters noted by arrows.
(b)–(d) Estimated SVBRDF parameter values for the target clusters over frames. We plot our estimates with solid lines and the ground truth
values with dotted lines (synthetic only).

(a) Photograph

(d) Guo et al. (e) Ours(c) DynamicFusion(b) Cube map

Figure 13: We compare our method with two online scanning meth-
ods. (a) Reference photograph. (b) An environment map. (c) Dy-
namicFusion [NFS15] presents fixed specular reflection while (d)
Guo et al. [GXY∗17] can reconstruct only diffuse shading. (e) Our
method can acquire both specular and diffuse appearance. Note
that specular reflection changes realistically in our results when the
environment illumination spins. Refer to the supplemental video for
more results.

Photograph BRDF Photograph BRDF

Figure 14: We present captured BRDFs of dynamic objects, re-
constructed by our method. Even though objects are dynamic, we
reconstruct diffuse color and specular lobe successfully.

distance error of the entire human body is just 1.62 mm. It is not
surprising that there are some large errors around challenging ge-
ometry, such as hair and the silhouette of the body. Overall, our
method successfully reconstructs SVBRDF, shape, and motion for

not only synthetic data but also real data. Refer to the supplemen-
tary video for every reconstruction results.

Qualitative Evaluation Figure 11 presents the results of real-
world dynamic objects. We present (a) input color frame, (b) our
reconstructed 3D objects rendered with a point light, (c) diffuse
albedo, (d) specular roughness, (e) surface normals, and (f) novel
light-and-view rendering with an environment illumination map to
qualitatively evaluate the overfitting problem of inverse rendering.
The results of diffuse albedo and specular roughness demonstrate
the effectiveness of our decomposition of material properties. Our
results rendered under novel environmental lighting and view con-
ditions present no typical blinking artifacts of overfitting. Refer to
the supplemental video for every reconstruction result.

Progressive Reconstruction Our method reconstructs SVBRDF
and geometry progressively per frame. Figure 12 shows our esti-
mates of specular albedo, specular roughness, and diffuse albedo
for each frame for a real scene and a synthetic scene. For the
real-world case, the optimization for diffuse albedo converges fast
thanks to our robust clustering. In contrast, optimization for spec-
ular parameters requires a long iteration to be stabilized, showing
fluctuation at an early stage. Our method provides fast and accurate
convergence when optimizing both diffuse and specular appear-
ance parameters: RGB diffuse albedo, specular albedo, and spec-
ular roughness.

Comparison Figure 13 compares our method with other two
fusion-based methods of capturing objects using a single RGBD
camera: DynamicFusion [NFS15] and Guo et al. [GXY∗17]. Since
there is no available public source, we implemented both methods.
DynamicFusion [NFS15] does not separate diffuse and specular re-
flection, i.e., it stores the sum of diffuse and specular colors as a sin-
gle color while geometry and motion can be faithfully recovered.
Guo et al. [GXY∗17] extend the estimation of geometry and mo-
tion to capture the diffuse appearance of objects. Their method can
cover only diffuse shading rendering, missing specular reflection.
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Our method is capable of estimating the full SVBRDF appearance
of diffuse and specular components, in addition to the motion and
geometry of dynamic objects. Figure 14 presents our reconstructed
BRDFs of the dynamic objects that present very different charac-
teristics.

8. Discussion

While our method can handle various scenes, it is not free from
limitations.

Infrared Illumination & Camera In order to estimate appear-
ance parameters, we have made use of the infrared illumination and
camera in the TOF module of Kinect 2. Since these light and sensor
modules are originally designed for measuring depth information,
the RGBD camera API does not provide any custom control of ex-
posure level of the IR emitter/sensor. Therefore, we were not able
to capture high-dynamic-range (HDR) images as input for estimat-
ing specular reflection. When surface normals of specular objects
look at the camera directly, not only depth map but also IR images
have often been saturated, resulting in suboptimal results. See Fig-
ure 15(a).

Frequency of Texture For estimating specular roughness param-
eters per pixel, we have used the infrared camera in the TOF mod-
ule. The resolution of the IR image sensor is 512-by-424, while the
resolution of the RGB image sensor is 1920-by-1080. The resolu-
tion of the IR sensor is four-time lower than that of the RGB sen-
sor. Accordingly, when a target object has high-frequency patterns,
the estimated specular parameter cannot reflect the object’s appear-
ance in high frequency. Figure 15(b) shows that the high-frequency
structure of diffuse surface lines over the green tree cannot be esti-
mated properly.

Rapid motion When estimating motion vectors of dynamic ob-
jects, our method inherits the traditional linearized approximation
of differential motion using the twist representation [MSZ94]. We
found that the performance of this approach has become suboptimal
when motion occurs very dynamically, or input frames are captured
with severe motion blurring. See Figure 15(c) for an example. In
addition, when motion causes deformation of objects surface with
texture, our method cannot account for the stretch of the texture
surfaces. This would be interesting future work to explore.

Spatial Resolution The spatial resolution of SVBRDF and shape
is determined by the spatial resolution of the TSDF volume. Since
we currently store this information for each vertex, the current res-
olution degrades the spatial resolution of the final results. Apply-
ing texture mapping to our framework would be interesting future
work.

Frame Rate The current frame rate is about two frames per sec-
ond, which is lower than the real-time performance thus far due
to challenges of heavy optimization in factorizing SVBRDF, ge-
ometry, and motion simultaneously. Accelerating computation for
real-time applications would be an interesting avenue to explore.

(a) Color frame IR frame Depth map with normals

(c) Color frame Motion vectors(b) Color frame Specular roughness

Figure 15: (a) Owing to the limited dynamic range of the image
sensor, input signals from the IR camera are saturated when sur-
face smoothness is high. It often results in no depth values. The per-
formance of our method becomes suboptimal when object surfaces
are very smooth. (b) The resolution of the IR camera is four-time
lower than that of the RGB camera, and thus our method fails in
capturing high-frequency patterns of specular roughness. (c) When
motion is large or rapid, our motion estimation often suffer from
suboptimal reconstruction results due to motion blur.

9. Conclusions

We have presented a novel material acquisition method that esti-
mates SVBRDF, geometry, and motion simultaneously using a sin-
gle RGBD camera. We have proposed an inverse rendering frame-
work that can efficiently estimate material appearance using the
voxel grid and the deformation graph in the two different scales. We
have also provided the appearance-aware motion estimation algo-
rithm so that the specular appearance can be considered to improve
the motion estimation accurately. We have experimented with real-
world objects. Lastly, we have carefully discussed the limitations,
evaluations, and comparisons with other methods to validate the
performance of our method.
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URL: https://doi.org/10.1145/1230100.1230107, doi:
10.1145/1230100.1230107. 5

[LPG19] LIN Y., PEERS P., GHOSH A.: On-Site Example-Based Mate-
rial Appearance Acquisition. Computer Graphics Forum (2019). doi:
10.1111/cgf.13766. 3

[LWS∗13] LI G., WU C., STOLL C., LIU Y., VARANASI K., DAI
Q., THEOBALT C.: Capturing relightable human performances under
general uncontrolled illumination. Computer Graphics Forum (2013).
doi:10.1111/cgf.12047. 1, 2, 7

[LZG18] LI C., ZHAO Z., GUO X.: Articulatedfusion: Real-time re-
construction of motion, geometry and segmentation using a single depth
camera, 2018. 3

[MSZ94] MURRAY R. M., SASTRY S. S., ZEXIANG L.: A Mathematical
Introduction to Robotic Manipulation, 1st ed. CRC Press, Inc., Boca
Raton, FL, USA, 1994. 6, 13

[NFS15] NEWCOMBE R. A., FOX D., SEITZ S. M.: Dynamicfusion:
Reconstruction and tracking of non-rigid scenes in real-time. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (Boston, Massachusetts, USA, 2015), pp. 343–352. 2, 3, 5, 6, 7, 8,
12

[NJR15] NIELSEN J. B., JENSEN H. W., RAMAMOORTHI R.: On opti-
mal, minimal brdf sampling for reflectance acquisition. ACM Transac-
tions on Graphics (TOG) 34, 6 (2015), 1–11. 3

[NLGK18] NAM G., LEE J. H., GUTIERREZ D., KIM M. H.: Practical
SVBRDF Acquisition of 3D Objects with Unstructured Flash Photogra-
phy. ACM Transactions on Graphics (Proc. SIGGRAPH Asia 2018) 37,
6 (2018), 267:1–12. 2, 3, 6

[NLW∗16] NAM G., LEE J. H., WU H., GUTIERREZ D., KIM M. H.:
Simultaneous acquisition of microscale reflectance and normals. ACM
Transactions on Graphics (Proc. SIGGRAPH Asia 2016) 35, 6 (2016).
1, 2

[PNS18] PARK J. J., NEWCOMBE R., SEITZ S.: Surface light field fu-
sion. In 2018 International Conference on 3D Vision (3DV) (Verona,
Italy, 2018), IEEE, pp. 12–21. 2, 6, 7, 9

[RH01] RAMAMOORTHI R., HANRAHAN P.: A signal-processing frame-
work for inverse rendering. 117–128. 5

[RL01] RUSINKIEWICZ S., LEVOY M.: Efficient variants of the icp algo-
rithm. In 3DIM (Washington, DC, USA, 2001), IEEE Computer Society,
pp. 145–152. 5

[RPG16] RIVIERE J., PEERS P., GHOSH A.: Mobile sur-
face reflectometry. Comput. Graph. Forum 35, 1 (Feb. 2016),
191âĂŞ202. URL: https://doi.org/10.1111/cgf.12719,
doi:10.1111/cgf.12719. 2

[RRFG17] RIVIERE J., RESHETOUSKI I., FILIPI L., GHOSH A.: Polar-
ization imaging reflectometry in the wild. ACM Transactions on Graph-
ics (TOG) 36, 6 (2017), 206. 2

[SBCI17] SLAVCHEVA M., BAUST M., CREMERS D., ILIC S.: Killing-
fusion: Non-rigid 3d reconstruction without correspondences. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(Hawaii, USA, 2017), vol. 3, p. 7. 3

[SBI18] SLAVCHEVA M., BAUST M., ILIC S.: Sobolevfusion: 3d recon-
struction of scenes undergoing free non-rigid motion. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (Salt
Lake City, Utah, USA, 2018), pp. 2646–2655. 3

[SSWK13] SCHWARTZ C., SARLETTE R., WEINMANN M., KLEIN R.:
Dome ii: A parallelized btf acquisition system. In Proceedings of the
Eurographics 2013 Workshop on Material Appearance Modeling: Issues
and Acquisition (Goslar, DEU, 2013), MAM âĂŹ13, Eurographics As-
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